当前位置:高中试题 > 数学试题 > 函数极值与最值 > 若数列{an}的首项为a1=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,其中0<|c|<1,当limn→∞(b1+b2+…+bn)...
题目
题型:不详难度:来源:
若数列{an}的首项为a1=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,其中0<|c|<1,当
lim
n→∞
(b1+b2+…+bn)≤3,求c的取值范围.
答案
∵对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,
∴an+an+1=bn,an•an+1=cn
an+1an+2
anan+1
=
an+2
an
=
cn+1
cn
=c.
∵a1=1,∴a1•a2=a2=c.
∴a1,a3,a5,…,a2n-1,构成首项为1,公比为c的等比数列,
a2,a4,a6,…,a2n,构成首项为c,公比为c的等比数列.
又∵任意n∈N*,an+an+1=bn恒成立.
bn+2
bn
=
an+2+an+3
an+an+1
=c.又b1=a1+a2=1+c,b2=a2+a3=2c,
∴b1,b3,b5,…,b2n-1,构成首项为1+c,公比为c的等比数列,
b2,b4,b6,…,b2n,构成首项为2c,公比为c的等比数列,
∵0<|c|<1,
lim
n→∞
cn=0
lim
n→∞
(b1+b2+b3+…+bn)=
lim
n→∞
(b1+b3+b5+…)+
lim
n→∞
(b2+b4+…)
=
1+c
1-c
+
2c
1-c
≤3.
解得c≤
1
3
或c>1.
∵0<|c|<1,∴0<c≤
1
3
或-1<c<0.
故c的取值范围是(-1,0)∪(0,
1
3
].
核心考点
试题【若数列{an}的首项为a1=1,且对任意n∈N*,an与an+1恰为方程x2-bnx+cn=0的两根,其中0<|c|<1,当limn→∞(b1+b2+…+bn)】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且
lim
n→∞
an
bn
=
1
2
,求极限
lim
n→∞
1
a1b1
+
1
a2b2
+…+
1
anbn
)的值.
题型:不详难度:| 查看答案
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).
(1)求{bn}的通项公式;
(2)求
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.
题型:不详难度:| 查看答案
设数列a1,a2,…,an,…的前n项的和Sn与an的关系是Sn=kan+1,(其中k是与n无关的常数,且k≠1).
(1)试写出用n,k表示的an的表达式;
(2)若
lim
n→∞
sn
=1,求k的取值范围.
题型:不详难度:| 查看答案
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,Sn=a1+a2+…+an,那么
lim
n→∞
Sn的值等于(  )
A.8B.16C.32D.48
题型:不详难度:| 查看答案
点P在曲线y=x3-x+
2
3
上移动,设点P处切线的倾斜角为α,求α的范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.