当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数(1)若的极值点,求实数a的值;(2)若上为增函数,求实数a的取值范围;(3)当有实根,求实数b的最大值。...
题目
题型:不详难度:来源:
已知函数
(1)若的极值点,求实数a的值;
(2)若上为增函数,求实数a的取值范围;
(3)当有实根,求实数b的最大值。
答案

解:(1)……1分
因为的极值点,所以
,解得,又当时,,从而的极值点成立。…………2分
(2)因为在区间上为增函数,所以在区间上恒成立。…………3分
①当时,在区间上恒成立,在区间上为增函数,符合题意。…………4分
②当时,由函数的定义域可知,必有成立,
故只能…………5分
恒成立
,其对称轴为
从而要使恒成立,只要即可…………6分
  解得:
,故
综上所述,实数的取值范围为…………7分
(3)若时,方程可化为,
问题转化为上有解,
即求函数的值域.………………………………8分
以下给出两种求函数值域的方法:
解法一:,令
…………9分
所以当时,,从而上为增函数
时,,从而上为减函数
因此…………10分
,故…………11分
因此当时,取得最大值………12分
解法二:因为,所以
,则………9分
时,,所以上单调递增
时,,所以上单调递减
因为,故必有,又…10分
因此必存在实数使得
时,,所以上单调递减;
时,,所以上单调递增
时,,所以上单调递减………11分
又因为
时,,则,又
因此当时,取得最大值
解析
本试题主要是考查了导数在研究函数中的运用。主要是极值的概念和根据单调区间,求解参数的取值范围,以及利用函数与方程的思想求解参数b的最值。
核心考点
试题【已知函数(1)若的极值点,求实数a的值;(2)若上为增函数,求实数a的取值范围;(3)当有实根,求实数b的最大值。】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
若函数f(x)=2x(x-c)2+3在处有极小值,则常数的值为(      )
A.2或6B.6C.2D.4

题型:不详难度:| 查看答案
已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  )
A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>6

题型:不详难度:| 查看答案
若函数在R上无极值点,则实数m的取值范围是____.
题型:不详难度:| 查看答案
函数的导函数的图像如右图所示,则_______.
题型:不详难度:| 查看答案
求函数单调区间与极值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.