当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=ex+alnx的定义域是D,关于函数f(x)给出下列命题: ①对于任意a∈(0,+∞),函数f(x)是D上的减函数; ②对于任意a∈(-∞,0...
题目
题型:北京模拟题难度:来源:
已知函数f(x)=ex+alnx的定义域是D,关于函数f(x)给出下列命题:
①对于任意a∈(0,+∞),函数f(x)是D上的减函数;
②对于任意a∈(-∞,0),函数f(x)存在最小值;
③存在a∈(0,+∞),使得对于任意的x∈D,都有f(x)>0成立;
④存在a∈(-∞,0),使得函数f(x)有两个零点;
其中正确命题的序号是(    )(写出所有正确命题的序号)
答案
②④
核心考点
试题【已知函数f(x)=ex+alnx的定义域是D,关于函数f(x)给出下列命题: ①对于任意a∈(0,+∞),函数f(x)是D上的减函数; ②对于任意a∈(-∞,0】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数
(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(Ⅱ)设m,n∈R+,且m≠n,求证:
题型:北京模拟题难度:| 查看答案
已知数列{an}和{bn}满足a1=b1,且对任意n∈N*都有an+bn=1,
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)证明:
题型:广东省模拟题难度:| 查看答案
设函数f(x)=x2ex-1-x3-x2(x∈R),
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)求y=f(x)在[-l,2]上的最小值;
(Ⅲ)当x∈(1,+∞)时,用数学归纳法证明:n∈N*,ex-1
题型:山东省模拟题难度:| 查看答案
已知函数
(Ⅰ)确定y=f(x)在(0,+∞)上的单调性;
(Ⅱ)设h(x)=x·f(x)-x-ax3在(0,2)上有极值,求a的取值范围。
题型:山东省模拟题难度:| 查看答案
函数y=f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0。设a=f(0),b=f(0.5),c=f(3),则

[     ]

A.a<b<c
B.c<a<b
C.c<b<a
D.b<c<a
题型:天津模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.