当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)= xe-x(x∈R)。 (1)求函数f(x)的单调区间和极值; (2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证...
题目
题型:天津高考真题难度:来源:
已知函数f(x)= xe-x(x∈R)。
 (1)求函数f(x)的单调区间和极值;
 (2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x);
 (3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2。
答案
解:(1)f"(x)=(1-x)e-x
令f"(x)=0,解得x=1
当x变化时,f"(x),f(x)的变化情况如下表:

所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数
函数f(x)在x=1处取得极大值f(1),且
(2)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2
令F(x)=f(x)-g(x),即F(x)=xe-x+(x -2)ex-2
于是F"(x)=(x-1)(e2x-2-1)e-x
当x>1时,2x-2>0,从而e2x-2-1 >0
又e-x>0,
所以F"(x)>0
从而函数F(x)在[1,+∞)上是增函数
又F(1)=e-1-e-1=0,
所以x>1时,有F(x)>F(1)=0,即f(x)>g(x)。
(3)①若(x1-1)(x2-1)=0,由(1)及f(x1)= f(x2),得x1=x2=1,与x1≠x2矛盾
②若(x1-1)(x2-1)>0,由(1)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾
根据①②得(x1-1)(x2-1)<0
不妨设x1<1,x2>1
由(2)可知,f(x2)>g(x2),g(x2)=f(2-x2),
所以f(x2)>f(2 -x2),
从而f(x1)>f(2-x2
因为x2>1,
所以2-x2<1
又由(1)可知函数f(x)在区间(-∞,1)内是增函数,
所以x1>2-x2,即x1+x2>2。
核心考点
试题【已知函数f(x)= xe-x(x∈R)。 (1)求函数f(x)的单调区间和极值; (2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=(a+1)lnx+ax2+1,
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设a<-1,如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范围。
题型:辽宁省高考真题难度:| 查看答案
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中x∈R。
(1)设函数p(x)=f(x)+g(x)。若p(x)在区间(0,3)上不单调,求k的取值范围;
(2)设函数,否存在k,对任意给定的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得q"(x2)=q"(x1)成立?若存在,求k的值;若不存在,请说明理由。
题型:浙江省高考真题难度:| 查看答案
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x),如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),
(Ⅰ)设函数,其中b为实数,
(ⅰ)求证:函数f(x)具有性质P(b);
(ⅱ)求函数f(x)的单调区间;
(Ⅱ)已知函数g(x)具有性质P(2)。给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α) -g(β)|<|g(x1)-g(x2)|,求m的取值范围。
题型:江苏高考真题难度:| 查看答案
已知函数f(x)=lnx-ax+-1(a∈R),
(Ⅰ)当a≤时,讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4,当a=时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围。
题型:山东省高考真题难度:| 查看答案
已知函数f(x)=x3+ax2+x+1,a∈R
 (1)讨论函数f(x)的单调区间;
 (2)设函数f(x)在区间内是减函数,求a的取值范围。
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.