当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;...
题目
题型:重庆市高考真题难度:来源:
已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数。
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围。
答案
解:(Ⅰ)由题意知f(1)=-3-c,因此b-c=-3-c,从而b=-3,
又对f(x)求导得
由题意f′(1)=0,
因此a+4b=0,解得a=12。
(Ⅱ)由(Ⅰ)知(x>0),
令f′(x)=0,解得x=1,
当0<x<1时,f′(x)<0,此时f(x)为减函数;
当x>1时,f′(x)>0,此时f(x)为增函数;
因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞)。
(Ⅲ)由(Ⅱ)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值,
要使(x>0)恒成立,只需
或c≤-1,
所以c的取值范围为
核心考点
试题【已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数,(x≠0)(a≠0),
(1)试就实数a的不同取值,写出该函数的单调递增区间;
(2)已知当a>0时,函数在(0,)上单调递减,在(,+∞)上单调递增,求a的值并写出函数的解析式;
(3)若函数f(x)在区间内有反函数,试求出实数a的取值范围。
题型:0109 期中题难度:| 查看答案
函数f(x)=x-a在x∈[1,4]上单调递减,则实数a的最小值为

[     ]

A.1
B.2
C.4
D.5
题型:0115 期中题难度:| 查看答案
已知函数f(x)=lnx-,g(x)=f(x)+ax-6lnx,其中a∈R,
(Ⅰ)当a=1时判断f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若x1∈(0,1),x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围。
题型:0115 期中题难度:| 查看答案
已知函数f(x)=lnx-
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若2xlnx≤2mx2-1在[1,e]恒成立,求m的取值范围。
题型:0115 期中题难度:| 查看答案
如图,三次函数y=ax3+bx2+cx+d的零点为-1,1,2,则该函数的单调减区间为(    )。

题型:0110 期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.