当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设a∈R,函数f(x)=ax3-3x2.(1)若x=2是函数y=f(x)的极值点,求实数a的值;(2)若函数g(x)=exf(x)在[0,2]上是单调减函数,求...
题目
题型:怀柔区二模难度:来源:
设a∈R,函数f(x)=ax3-3x2
(1)若x=2是函数y=f(x)的极值点,求实数a的值;
(2)若函数g(x)=exf(x)在[0,2]上是单调减函数,求实数a的取值范围.
答案
(Ⅰ)f"(x)=3ax2-6x=3x(ax-2).
因为x=2是函数y=f(x)的极值点,所以f"(2)=0,即6(2a-2)=0,
所以a=1.经检验,当a=1时,x=2是函数y=f(x)的极值点.
即a=1.(6分)
(Ⅱ)由题设,g′(x)=ex(ax3-3x2+3ax2-6x),又ex>0,
所以,∀x∈(0,2],ax3-3x2+3ax2-6x≤0,
这等价于,不等式a≤
3x2+6x
x3+3x2
=
3x+6
x2+3x
对x∈(0,2]恒成立.
h(x)=
3x+6
x2+3x
(x∈(0,2]),
h(x)=-
3(x2+4x+6)
(x2+3x)2
=-
3[(x+2)2+2]
(x2+3x)2
<0

所以h(x)在区间(0,2]上是减函数,
所以h(x)的最小值为h(2)=
6
5

所以a≤
6
5
.即实数a的取值范围为(-∞,
6
5
]
.(13分)
核心考点
试题【设a∈R,函数f(x)=ax3-3x2.(1)若x=2是函数y=f(x)的极值点,求实数a的值;(2)若函数g(x)=exf(x)在[0,2]上是单调减函数,求】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
定义在R上的函数f(x)=ax3+bx2+cx+d满足:函数f(x)的图象关于原点对称且过点(3,-6),函数f(x)在点x1、x2处取得极值,且|x1-x2|=4.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求函数f(x)过点P(1,-8)的切线方程.
题型:不详难度:| 查看答案
已知函数f(x)=x3-3ax2+3x+1
(1)设a=2,求f(x)的单调增区间;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.
题型:不详难度:| 查看答案
函数f(x)=(x-2)•ex的单调递增区间是(  )
A.(-∞,1)B.(0,2)C.(1,+∞)D.(2,+∞)
题型:不详难度:| 查看答案
已知函数f(x)=x3-3ax2-bx,其中a,b为实数,
(1)若f(x)在x=1处取得的极值为2,求a,b的值;
(2)若f(x)在区间[-1,2]上为减函数,且b=9a,求a的取值范围.
题型:深圳一模难度:| 查看答案
已知f(x)=x3-
1
2
x2-2x+c,常数c是实数.
(I)当f(x)取得极小值时,求实数x的值;
(II)当-1≤x≤2时,求f(x)的最大值.
(II)当-1≤x≤2时,不等式f(x)<c2恒成立,求c的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.