当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > (本小题满分14分)已知函数.(Ⅰ) 求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在...
题目
题型:不详难度:来源:
(本小题满分14分)
已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.
答案
(Ⅰ)当时,函数的单调增区间是,单调减区间是
时,函数的单调增区间是,单调减区间是.
(Ⅱ)当内取值时,对于任意的,函数在区间上总存在极值.
(Ⅲ)
解析

试题分析:(I)求导,根据导数大(小)于零,求得函数f(x)的增(减)区间,要注意含参时对参数进行讨论.
(II)根据可得,从而可求出,进而得到,那么本小题就转化为有两个不等实根且至少有一个在区间内,然后结合二次函数的图像及性质求解即可.
(III)当a=2时,令,则
.
然后对p分两种情况利用导数进行求解即可.
(Ⅰ)由
时,函数的单调增区间是,单调减区间是
时,函数的单调增区间是,单调减区间是.
(Ⅱ)由,    ∴.   


∵ 函数在区间上总存在极值,
有两个不等实根且至少有一个在区间
又∵函数是开口向上的二次函数,且

上单调递减,所以; 
,由,解得
综上得: 
所以当内取值时,对于任意的,函数在区间上总存在极值.
(Ⅲ),则
.
①当时,由,从而,
所以,在上不存在使得
②当时,,
上恒成立,
上单调递增.
 
故只要,解得
综上所述, 的取值范围是
点评:利用导数求单调区间时,要注意含参时要进行讨论,并且对于与不等式结合的综合性比较强的题目,要注意解决不等式问题时,构造函数利用导数研究单调性极值最值研究.
核心考点
试题【(本小题满分14分)已知函数.(Ⅰ) 求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪ (0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)

题型:不详难度:| 查看答案
(本题满分12分) 
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.
题型:不详难度:| 查看答案
(本小题满分12分)
已知函数上是增函数,在上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围;
(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.
题型:不详难度:| 查看答案
(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.
题型:不详难度:| 查看答案
(本题14分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.