当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值....
题目
题型:不详难度:来源:
已知函数
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求的值.
答案
(I)利用导数法求解单调区间即可证明;(II)t=2
解析

试题分析:(I)f’(x)=axlna+2x-lna=(ax-1) lna +2x 
当a>1时,lna >0
当x∈(0,+∞)时,ax-1>0,2x>0
∴f’(x)>0,∴f(x)在(0,+∞)↑
(II)当a>1时,x∈(-∞,0)时,ax-1<0,2x<0
f’(x)<0,∴f(x)在(-∞,0)↓
当0<a<1时, x∈(0,+∞)时,lna <0, ax-1<0,
f’(x)>0,f(x)在(0,+∞)↑
x ∈(-∞,0)时, ax-1>0, lna <0
f’(x)<0, f(x)在(-∞,0)↓
∴当a>0且a≠1时,f(x) 在(-∞,0)↓,f(x)在(0,+∞)↑
∴x=0是f(x)在k上唯一极小值点,也是唯一最小值点.
f(x)min=f(0)=1
若y=[f(x)-t]-1有三个零点,即|f(x)-t|=1,f(x)=t±1有三个根,所以t+1>t-1
∴t-1="f" (x)min= 1,∴t=2
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.
核心考点
试题【已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值.】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数处有极大值,则常数c=     
题型:不详难度:| 查看答案
已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.
题型:不详难度:| 查看答案
题文已知函数.
(1)求函数的单调递减区间;
(2)若不等式对一切恒成立,求的取值范围.
题型:不详难度:| 查看答案
设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2

题型:不详难度:| 查看答案
函数的的单调递增区间是 (    )
A.B.
C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.