当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数(Ⅰ)求的单调区间;(Ⅱ)若函数的图象与x轴有且只有三个交点,求实数c的取值范围....
题目
题型:不详难度:来源:
已知函数
(Ⅰ)求的单调区间;(Ⅱ)若函数的图象与x轴有且只有三个交点,求实数c的取值范围.
答案
(Ⅰ) 单调增区间为,单调减区间(0,2)(Ⅱ)  
解析
:(Ⅰ)
取得极值,得……2分
…………4分
单调增区间为
的单调减区间(0,2)……8分
(Ⅱ)又当x充分小时又当x充分大时,
∴若有3个实根,则  ……14分
核心考点
试题【已知函数(Ⅰ)求的单调区间;(Ⅱ)若函数的图象与x轴有且只有三个交点,求实数c的取值范围.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知:三次函数,在上单调增,在(-1,2)上单调减,当且仅当时,

20070328


 
  (1)求函数f (x)的解析式;  (2)若函数,求的单调区间.
题型:不详难度:| 查看答案
如右图(1)所示,定义在区间上的函数,如果满     
足:对常数A,都有成立,则称函数  
在区间上有下界,其中称为函数的下界. (提示:图(1)、(2)中的常数可以是正数,也可以是负数或零)
(Ⅰ)试判断函数上是否有下界?并说明理由;
(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.
请你类比函数有下界的定义,给出函数在区间
有上界的定义,并判断(Ⅰ)中的函数在上是否
有上界?并说明理由;                   
(Ⅲ)若函数在区间上既有上界又有下界,则称函数
在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是是常数)上的有界函数?
题型:不详难度:| 查看答案
设函数,其中,将的最小值记为
(1)求的表达式;
(2)讨论在区间内的单调性并求极值.
题型:不详难度:| 查看答案
(本题满分12分)已知函数(1)求在区间上的最大值;  (2)若方程有且只有三个不同的实根,求实数的取值范围.
题型:不详难度:| 查看答案
(本小题满分14分)设其导函数的图象经过点,(2,0),如右图所示。
(Ⅰ)求函数的解析式和极值;
(Ⅱ)对都有恒成立,求实数m的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.