当前位置:高中试题 > 数学试题 > 常见函数的导数 > .已知函数(1)判定的单调性,并证明。(2)设,若方程有实根,求的取值范围。(3)求函数在上的最大值和最小值。...
题目
题型:不详难度:来源:
.已知函数(1)判定的单调性,并证明。
(2)设,若方程有实根,求的取值范围。
(3)求函数上的最大值和最小值。
答案
(1)当x<-3时,当a>1时,f(x1)-f(x2)<0,∴f(x)在()上单调递增
当0<a<1时,f(x1)-f(x2)>0, ∴f(x)在()上单调递减
x>3时,同理。(2);(3)函数h(x)在[4,6]上的最为,最大值为h(4)=-2。
解析

(1),当x<-3时,任取x1<x2<-3
-
∵(x1-3)(x2+3)-(x1+3)(x2-3)=6(x1-x2)<0,
又(x1-3)(x2+3)>0且(x1+3)(x2-3)>0
<1
∴当a>1时,f(x1)-f(x2)<0,∴f(x)在()上单调递增
当0<a<1时,f(x1)-f(x2)>0, ∴f(x)在()上单调递减
x>3时,同理。
(2)若f(x)=g(x)有实根,即:
,∴方程有大于3的实根。


当且仅当,即“=”号成立

(3)
得x2-3x-4=0解得x1=4,x2=-1(舍去)
时,单调递减;
∴函数h(x)在[4,6]上的最为,最大值为h(4)=-2。
核心考点
试题【.已知函数(1)判定的单调性,并证明。(2)设,若方程有实根,求的取值范围。(3)求函数在上的最大值和最小值。】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
设函数
(Ⅰ)若,函数是否有极值,若有则求出极值,若没有,请说明理由.
(Ⅱ)若在其定义域内为单调函数,求实数p的取值范围.
题型:不详难度:| 查看答案
已知
   (1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根;
(2)证明:
题型:不详难度:| 查看答案
已知函数
(1)若有极值,求b的取值范围;
(2)若处取得极值时,当恒成立,求c的取值范围;
(3)若处取得极值时,证明:对[-1,2]内的任意两个值都有
题型:不详难度:| 查看答案
已知函数是偶函数,当时.(a为实数).
(1)若处有极值,求a的值。(6分)
(2)若上是减函数,求a的取值范围。(8分)
题型:不详难度:| 查看答案
若函数为奇函数,且过点,函数
(1)求函数的解析式并求其定义域;
(2)求函数的单调区间;
(3)若当时不等式恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.