当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数.(1)若函数为奇函数,求a的值;(2)若函数在处取得极大值,求实数a的值;(3)若,求在区间上的最大值....
题目
题型:不详难度:来源:
已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数处取得极大值,求实数a的值;
(3)若,求在区间上的最大值.
答案
(1);(2);(3) 当时,取得最大值;
时, 取得最大值.
解析

试题分析:(1)首先求出导数:
代入得:.
因为为奇函数,所以必为偶函数,即
所以.
(2)首先求出函数的极大值点.又由题设:函数处取得极大值.二者相等,便可得的值.
(3).
得:.
注意它的两个零点的差恰好为1,且必有.
结合导函数的图象,可知导函数的符号,从而得到函数的单调区间和极值点.
试题解析:(1)因为
所以                           2分
由二次函数奇偶性的定义,因为为奇函数,
所以为偶函数,即
所以                                               4分
(2)因为.
,得,显然.
所以的变化情况如下表:







+
0
-
0
+

递增
极大值
递减
极小值
递增
 由此可知,函数处取得极大值.
又由题设知:函数处取得极大值,所以.
(3).
,得.因为,所以.
时,成立,
所以当时,取得最大值;
时,在时,单调递增,在时,单调递减,所以当时,取得最大值;
时,在时,单调递减,所以当时,取得最大值;
综上所述, 当时,取得最大值;
时, 取得最大值.               13分
核心考点
试题【已知函数.(1)若函数为奇函数,求a的值;(2)若函数在处取得极大值,求实数a的值;(3)若,求在区间上的最大值.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数及其导数,若存在,使得=,则称 的一个“巧值点”,下列函数中,有“巧值点”的函数的个数是(  )
,②,③,④,⑤
A.2B.3C.4D.5

题型:不详难度:| 查看答案
已知函数是f(x)的导函数,若,,则=           .
题型:不详难度:| 查看答案
已知函数,是f(x)的导函数,则=  (    ) 
A.B.-C.D.-

题型:不详难度:| 查看答案
对于任意的,函数在区间上总不是单调函数,求的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
曲线在点处的切线方程为         
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.