当前位置:高中试题 > 数学试题 > 常见函数的导数 > 设函数(1)若是函数的极值点,和是函数的两个不同零点,且,求;(2)若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围....
题目
题型:不详难度:来源:
设函数
(1)若是函数的极值点,是函数的两个不同零点,且,求
(2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.
答案
(1);(2) 
解析

试题分析:(1)根据极值的定义,对函数求导,利用导数为求出对应的值为极值点,可得到一个关于的等式,又由函数零点的定义,可得,这样就可解得的值;(2)由题中所给任意,可设出关于的函数,又由的最大值,根据要求,使得成立,可将问题转化为在上有解,结合函数特点可求导数,由导数与的大小关系,可想到对的大小关系进行分类讨论,利用函数的最值与的大小关系,从而得到的取值范围.
试题解析:解(1),∵是函数的极值点,∴.∵1是函数的零点,得
解得.          4分
,
,所以,故.    8分
(2)令,则为关于的一次函数且为增函数,根据题意,对任意,都存在,使得成立,则有解,
,只需存在使得即可,
由于=

在(1,e)上单调递增,,            10分
①当,即时,,即在(1,e)上单调递增,∴,不符合题意.             12分
②当,即时,
,则,所以在(1,e)上恒成立,即恒成立,∴在(1,e)上单调递减,
∴存在,使得,符合题意.             14分
,则,∴在(1,e)上一定存在实数m,使得,∴在(1,m)上恒成立,即恒成立, 在(1,m)上单调递减,∴存在,使得,符合题意.
综上所述,当时,对任意,都存在,使得成立.   16分
核心考点
试题【设函数(1)若是函数的极值点,和是函数的两个不同零点,且,求;(2)若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围.】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
设函数
(Ⅰ)若,求的极小值;
(Ⅱ)在(Ⅰ)的结论下,是否存在实常数,使得?若存在,求出的值.若不存在,说明理由.
(Ⅲ)设有两个零点,且成等差数列,试探究值的符号.
题型:不详难度:| 查看答案
从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为________
题型:不详难度:| 查看答案
已知是二次函数,不等式的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然数m,使得方程=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
函数的导函数为             
题型:不详难度:| 查看答案
已知函数的定义域为区间.
(1)求函数的极大值与极小值;
(2)求函数的最大值与最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.