当前位置:高中试题 > 数学试题 > 常见函数的导数 > 已知函数.(1)求的最小值;(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数在上是否存在保值区间?若存在,请...
题目
题型:不详难度:来源:
已知函数
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
答案
(1)处取得最小值
(2)函数上不存在保值区间,证明见解析.
解析

试题分析:(1)求导数,解得函数的减区间
,得函数的增区间
确定处取得最小值
也可以通过“求导数、求驻点、研究函数的单调区间、确定极值(最值)” .
(2)函数上不存在保值区间.
函数存在保值区间即函数存在自变量的取值区间与对应函数值的取值区间相同.因此,可以假设函数存在保值区间,研究对应函数值的取值区间.在研究函数值取值区间过程中,要么得到肯定结论,要么得到矛盾结果.本题通过求导数:,明确时, ,得到所以为增函数,因此
转化得到方程有两个大于的相异实根,构造函数 后知其为单调函数,推出矛盾,作出结论.
试题解析:
(1)求导数,得
,解得.                     2分
时,,所以上是减函数;
时,,所以上是增函数.
处取得最小值.      6分
(2)函数上不存在保值区间,证明如下:
假设函数存在保值区间,
得:
时, ,所以为增函数,所以
即方程有两个大于的相异实根      9分
 

,所以上单增
所以在区间上至多有一个零点          12分
这与方程有两个大于的相异实根矛盾
所以假设不成立,即函数上不存在保值区间.      13分
核心考点
试题【已知函数.(1)求的最小值;(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数在上是否存在保值区间?若存在,请】;主要考察你对常见函数的导数等知识点的理解。[详细]
举一反三
已知函数
(1)求函数的极值;
(2)设函数若函数上恰有两个不同零点,求实数的取值范围.
题型:不详难度:| 查看答案
已知函数.
(1)当时,求函数单调区间;
(2)若函数在区间[1,2]上的最小值为,求的值.
题型:不详难度:| 查看答案
函数的导数为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
已知函数
(1)求函数的解析式;
(2)若对于任意,都有成立,求实数的取值范围;
(3)设,且,求证:
题型:不详难度:| 查看答案
记函数的导函数为,则 的值为     
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.