题目
题型:不详难度:来源:
答案
当x>2时,g(x)=x-1-(x-2)=1.
当x<1时,g(x)=1-x-(2-x)=-1
当1<x<2时,g(x)=x-1-(2-x)=2x-3,-1<g(x)=2x-3<1.
故-1≤g(x)≤1.要使关于x的不等式g(x)≤a恒成立.故a≥1.
故答案为a≥1.
核心考点
试题【已知函数g(x)=|x-1|-|x-2|,(x∈R),若关于x的不等式g(x)≤a恒成立,则实数a的取值范围是______.】;主要考察你对一元二次不等式及其解法等知识点的理解。[详细]
举一反三
A.-2<x<3 | B.x<-2或x>3 | C.-3<x<2 | D.x<-3或x>2 |