当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则下面正确的是(  )A.x100=-a,S100=2b...
题目
题型:不详难度:来源:
已知数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则下面正确的是(  )
A.x100=-a,S100=2b-aB.x100=-b,S100=2b-a
C.x100=-b,S100=b-aD.x100=-a,S100=b-a
答案
∵xn+1=xn-xn-1
∴xn+2=xn+1-xn,两式相加整理得xn+2=-xn-1
∴xn+5=-xn+2
∴xn-1=xn+5
∴数列{xn}是以6为周期的数列,
x1=a,x2=b,x3=b-a,x4=-a,x5=-b,x6=a-b,
∴x100=x6×16+4=x4=-a,S100=16×(x1+x2+x3+x4+x5+x6)+x1+x2+x3+x4=2b-a,
故选A
核心考点
试题【已知数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则下面正确的是(  )A.x100=-a,S100=2b】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
对于数列{an},定义数列{an+1-an}为{an}的“差数列”.
(I)若{an}的“差数列”是一个公差不为零的等差数列,试写出{an}的一个通项公式;
(II)若a1=2,{an}的“差数列”的通项为2n,求数列{an}的前n项和Sn
(III)对于(II)中的数列{an},若数列{bn}满足anbnbn+1=-21•28(n∈N*),且b4=-7.
求:①数列{bn}的通项公式;②当数列{bn}前n项的积最大时n的值.
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为______.
题型:安徽模拟难度:| 查看答案
数列1,1+2,1+2+4,…,1+2+4+…+2n-1,…的前n项和sn=______.
题型:不详难度:| 查看答案
已知数列a0,a1,a2,…,an,…满足关系式(3-an+1)(6+an)=18,且a0=3,则
n


i=0
1
ai
的值是______.
题型:不详难度:| 查看答案
设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn
题型:枣庄一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.