当前位置:高中试题 > 数学试题 > 数列综合 > 设Sn是各项均为非零实数的数列{an}的前n项和,给出如下两个命题上:命题p:{an}是等差数列;命题q:等式1a1a2+1a2a3+…+1anan+1=kn+...
题目
题型:盐城二模难度:来源:
设Sn是各项均为非零实数的数列{an}的前n项和,给出如下两个命题上:命题p:{an}是等差数列;命题q:等式
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
kn+b
a1an+1
对任意n(n∈N*)恒成立,其中k,b是常数.
(1)若p是q的充分条件,求k,b的值;
(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;
(3)若p为真命题,对于给定的正整数n(n>1)和正数M,数列{an}满足条件
a21
+
a2n+1
≤M
,试求Sn的最大值.
答案
(1)设{an}的公差为d,则原等式可化为
1
d
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
an
-
1
an+1
)=
kn+b
a1an+1

所以
1
d
nd
a1an+1
=
kn+b
a1an+1

即(k-1)n+b=0对于n∈N*恒成立,所以k=1,b=0.…(4分)
(2)当k=1,b=0时,假设p是q的必要条件,即“若
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
n
a1an+1
①对于任意的n(n∈N*)恒成立,则{an}为等差数列”.
当n=1时,
1
a1a2
=
1
a1a2
显然成立.…(6分)
当n≥2时,若
1
a1a2
+
1
a2a3
+…+
1
an-1an
=
n-1
a1an+1
②,
由①-②得,
1
anan+1
=
1
a1
n
an+1
-
n-1
an
),即nan-(n-1)an+1=a1③.
当n=2时,a1+a3=2a2,即a1、a2、a3成等差数列,
当n≥3时,(n-1)an-1-(n-2)an=a1④,即2an=an-1+an+1.所以{an}为等差数列,即p是q的必要条件.…(10分)
(3)由
a21
+
a2n+1
≤M,可设a1=rcosθ,an+1=rsinθ,所以r≤


M

设{an}的公差为d,则an+1-a1=nd=rsinθ-rcosθ,
所以d=
rsinθ-rcosθ
n

所以an=rsinθ-
rsinθ-rcosθ
n

Sn=
(a1+an)n
2
=
(n+1)cosθ+(n-1)sinθ
2
r≤


(n+1)2+(n-1)2
2


M
=


2
2


M(n2+1)

所以Sn的最大值为


2
2


M(n2+1)
…(16分)
核心考点
试题【设Sn是各项均为非零实数的数列{an}的前n项和,给出如下两个命题上:命题p:{an}是等差数列;命题q:等式1a1a2+1a2a3+…+1anan+1=kn+】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}的通项公式为an=
1
n(n+1)
(n∈N+),其前n项和Sn=
9
10
,则直线
x
n+1
+
y
n
=1
与坐标轴所围成三角形的面积为(  )
A.36B.45C.50D.55
题型:太原一模难度:| 查看答案
已知函数f(x)=x2n+ax的导数f′(x)=2x+3,则数列{
1
f(n)+2
}(n∈N*)
的前n项和是(  )
A.
n
n+1
B.
n-1
2(n+1)
C.
n
2(n+2)
D.
n
(n+1)(n+2)
题型:不详难度:| 查看答案
数列{an}的项是由l或2构成,且首项为1,在第k个l和第k+1个l之间有2k-1 个2,即数列{an} 为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列 {an}的前n项和为Sn,则S20=______; S2013=______.
题型:广州二模难度:| 查看答案
已知an=sin
3
cos
3
(n∈N*),数列{an}前n项的和为Sn,则S2013的值为(  )
A.2013B.0C.


3
4
D.
2013


3
4
题型:不详难度:| 查看答案
已知数列{an}的前n项和Sn=n2-6n,令bn=ancos
2nπ
3
,记数列{bn}的前项和为Tn,则T31=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.