当前位置:高中试题 > 数学试题 > 数列综合 > (I)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,则称数列{cn}是“M类数列”.(i)若an=3•2n,n∈N*,...
题目
题型:不详难度:来源:
(I)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,则称数列{cn}是“M类数列”.
(i)若an=3•2n,n∈N*,数列{an}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(ii)若数列{bn}的前n项和为Sn=n2+n,证明数列{bn}是“M类数列”.
(Ⅱ)若数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}前2013项的和.
答案
(Ⅰ)(i)∵an=3•2n,n∈N*
an+1=3×2n+1=2×(3×2n)=2×an=2an+0,
∴p=2,q=0
∴数列{an}是“M”数列.
(ii)当n=1时,b1=S1=12+1=2.
当n≥2时,bn=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
上式对于n=1时也成立,
∴bn=2n(n∈N*).
∴bn+1=2(n+1)=2n+2=bn+2.
∴数列{bn}是“M”数列,且p=1,q=2.
(Ⅱ)∵an+an+1=2n(n∈N*),∴a2+a3=22a4+a5=24,…a2012+a2013=22012
S2013=a1+a2+a3+…+a2013=2+22+24+…+22012=2+
4×(41006-1)
4-1
=
22014+2
3

故数列{an}前2013项的和S2013=
22014+2
3
核心考点
试题【(I)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,则称数列{cn}是“M类数列”.(i)若an=3•2n,n∈N*,】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}满足a1=1,an+1an=2n(n∈N*),则S2012=(  )
A.22012-1B.3×21006-3C.3×21006-1D.3×21005-2
题型:不详难度:| 查看答案
已知函数y=
x2-x+n
x2+1
(n∈N*,y≠1)的最小值为an,最大值为bn,且cn=4(anbn-
1
2
).数列{cn}的前n项和为Sn
(1)请用判别式法求a1和b1
(2)求数列{cn}的通项公式cn
(3)若{dn}为等差数列,且dn=
Sn
n+c
(c为非零常数),设f(n)=
dn
(n+36)dn+1
(n∈N*),求f(n)的最大值.
题型:不详难度:| 查看答案
求和
1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
=______.
题型:不详难度:| 查看答案
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
S2
b2

(1)求an与bn
(2)求
1
S1
+
1
S2
+…+
1
Sn
题型:花都区模拟难度:| 查看答案
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=(  )
A.0.1B.0.3C.0.6D.0.9
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.