当前位置:高中试题 > 数学试题 > 数列综合 > 已知数列{an}的前n项和Sn满足:Sn=aa-1(an-1)(其中a为常数且a≠0,a≠1,n∈N*)(1)求数列{an}的通项公式;(2)记bn=nan,求...
题目
题型:安徽模拟难度:来源:
已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(其中a为常数且a≠0,a≠1,n∈N*
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项和Tn
答案
(1)∵Sn=
a
a-1
(an-1)

Sn+1=
a
a-1
(an+1-1)

从而an+1=Sn+1-Sn=
a
a-1
(an+1-an),
∴an+1=a•an
当n=1时,由Sn=
a
a-1
(an-1)
,得a1=a.
∴数列{an}是以a为首项,a为公比的等比数列,故an=an
(2)由(1)得bn=n•an
Tn=a+2a2+3a3+…+nan
从而aTn=a2+2a3+3a4+…+nan+1
两式相减,得(1-a)Tn=a+a2+a3+…+an-nan+1
∵a≠0,且a≠1,
(1-a)Tn=
a(1-an)
1-a
-nan+1

=
nan+2-(n+1)an+1+a
1-a

从而Tn=
nan+2-(n+1)an+1+a
(1-a)2
核心考点
试题【已知数列{an}的前n项和Sn满足:Sn=aa-1(an-1)(其中a为常数且a≠0,a≠1,n∈N*)(1)求数列{an}的通项公式;(2)记bn=nan,求】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}的前n项和Sn=1-5+9-13+…+(-1)n-1(4n-3),求S15+S22-S31的值.
题型:不详难度:| 查看答案
已知数列{an}满足:a1=1;an+1-an=1,n∈N*.数列{bn}的前n项和为Sn,且Sn+bn=2,n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)令数列{cn}满足cn=an•bn,求其前n项和为Tn
题型:宁国市模拟难度:| 查看答案
求证:
C0n
+3
C1n
+5
C2n
+…+(2n+1)
Cnn
=(n+1)2n
题型:不详难度:| 查看答案
求数列
1
1×3
1
2×4
1
3×5
,…,
1
n(n+2)
,…的前n项和S.
题型:不详难度:| 查看答案
数列{an}:a1=1,a2=3,a3=2,an+2=an+1-an,求S2002
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.