当前位置:高中试题 > 数学试题 > 数列综合 > 在等比数列{an}中,已知a2=2,a3=4.(1)求数列{an}的通项an;(2)设bn=an+1,求数列{bn}的前n项和Tn....
题目
题型:不详难度:来源:
在等比数列{an}中,已知a2=2,a3=4.
(1)求数列{an}的通项an
(2)设bn=an+1,求数列{bn}的前n项和Tn
答案
(1)由a2=2,a3=4,得q=
a3
a2
=2,∴a1=
a2
q
=1,从而an=2n-1
(2)∵bn=an+1=2n-1+1
Tn=
1-2n
1-2
+n=2n-1+n
核心考点
试题【在等比数列{an}中,已知a2=2,a3=4.(1)求数列{an}的通项an;(2)设bn=an+1,求数列{bn}的前n项和Tn.】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知等比数列{an}单调递增,a1+a4=9,a2a3=8,bn=log22an
(Ⅰ)求an
(Ⅱ)若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
>0.99,求n的最小值.
题型:不详难度:| 查看答案
(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3
题型:不详难度:| 查看答案
如图,在面积为1的正△A1B1C1内作正△A2B2C2,使


A1A2
=2


A2B1


B1B2
=2


B2C1


C1C2
=2


C2A1
,依此类推,在正△A2B2C2内再作正△A3B3C3,….记正△AiBiCi的面积为ai(i=1,2,…,n),则a1+a2+…+an=______.
题型:不详难度:| 查看答案
已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7成等比数列.
(1)求通项an及前n项和Sn
(2)若有一新数列{bn},且bn=
1
anan+1
,求数列{bn}的前n项和Tn
题型:不详难度:| 查看答案
在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),求Tn=b1+b2+…+bn(n∈N*).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.