当前位置:高中试题 > 数学试题 > 等差数列 > 等差数列{an}的前n项和为Sn,若a1≠0,S4=a4,则S8S5=(  )A.1B.2C.3D.4...
题目
题型:不详难度:来源:
等差数列{an}的前n项和为Sn,若a1≠0,S4=a4,则
S8
S5
=(  )
A.1B.2C.3D.4
答案
设等差数列{an}的首项为a1≠0,公差为d,
 由S4=a4,得4a1+6d=a1+3d,得a1=-d≠0,
S8
S5
=
8a1+
8×7
2
×d
5a1+
5×4
2
×d
=
8a1+28d
5a1+10d
=
20d
5d
=4,
故选D.
核心考点
试题【等差数列{an}的前n项和为Sn,若a1≠0,S4=a4,则S8S5=(  )A.1B.2C.3D.4】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m
写出以上所有正确结论的序号,答:______.
题型:不详难度:| 查看答案
等差数列{an}中,a3+a7-a10=8,a11-a4=4,则S13=______.
题型:不详难度:| 查看答案
已知数列{an}满足an+1=2an+n+1(n=1,2,3,…).
(1)若{an}是等差数列,求其首项a1和公差d;
(2)证明{an}不可能是等比数列;
(3)若a1=-1,是否存在实数k和b使得数列{ an+kn+b}是等比数列,如存在,求出{an}的前n项和,若不存在,说明理由.
题型:不详难度:| 查看答案
等差数列{an}中,a3=2,则该列的前5项的和为(  )
A.10B.16C.20D.32
题型:不详难度:| 查看答案
已知数列{an}的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn
(3)在(2)的条件下,数列{cn}中是否存在三项,使得这三项成等差数列?若存在,求出此三项;若不存在,说明理由.
题型:丰台区二模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.