题目
题型:安徽模拟难度:来源:
1 |
2 |
1 |
2 |
(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=
n+1 |
n |
答案
1 |
2 |
即Sn+an=-(
1 |
2 |
1 |
2 |
两式相减得2an=an-1+(
1 |
2 |
∵bn=2nan,∴bn=bn-1+1(n≥3),即当n≥3时,bn-bn-1=1,
又b1=2a1=1,2(a1+a2)=a1-
1 |
2 |
1 |
2 |
∴数列{bn}是首项和公差均为1的等差数列…(5分)
于是bn=1+(n-1)•1=n=2nan,∴an=
n |
2n |
(Ⅱ)由(Ⅰ)得cn=
n+1 |
n |
1 |
2 |
所以cn=bn•(
1 |
2 |
1 |
2 |
Tn=2×
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
由①-②得
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=1+
| ||||
1-
|
1 |
2 |
3 |
2 |
n+3 |
2n+1 |
∴Tn=3-
n+3 |
2n |
核心考点
试题【已知数列{an}中a1=12,前n项和2Sn=Sn-1-(12)n-1+2(n≥2,n∈N).(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
A.27 | B.6 | C.81 | D.9 |