当前位置:高中试题 > 数学试题 > 等差数列 > (本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn...
题目
题型:不详难度:来源:
(本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)若Tn+…+,求Tn的表达式
答案
(1)an=2n-1;bn
(2)Tn=-+(n-1)×3n-1.
解析
解: (1)∵2an+1=an+2+an,∴数列{an}是等差数列,∴公差d=a2-a1=2,∴an=2n-1.∵bn+1=-Sn,∴bn=-Sn-1(n≥2).∴bn+1-bn=-bn,则bn+1bn.又∵b2=-S1=1,=-
∴数列{bn}从第二项开始是等比数列,
∴bn
(2)∵n≥2时,=(2n-1)·3n-2,∴Tn+…+=-+3×30+5×31+7×32+…+(2n-1)×3n-2,∴3Tn=-2+3×31+5×32+7×33+…+(2n-1)×3n-1
错位相减并整理得Tn=-+(n-1)×3n-1.
核心考点
试题【(本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设为前n个圆的面积之和,则=             .
题型:不详难度:| 查看答案
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为的等差数列,公差为为其前项和,且满足
.数列满足为数列的前n项和.
(1)求
(2)若对任意的,不等式恒成立,求实数的取值范围
题型:不详难度:| 查看答案
(本小题满分8分)已知数列是首项为1,公比为2的等比数列,数列的前项和
(1)求数列的通项公式;(2)求数列的前项和.
题型:不详难度:| 查看答案
数列中,已知,则  ▲  .
题型:不详难度:| 查看答案
的等比中项,则  ▲  .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.