当前位置:高中试题 > 数学试题 > 等差数列 > 在公差不为0的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,试比较与的大小,并说明理由....
题目
题型:不详难度:来源:
在公差不为0的等差数列中,,且成等比数列.
(1)求的通项公式;
(2)设,试比较的大小,并说明理由.
答案
(1)ann+1;(2)bn+1bn.
解析

试题分析:本题主要考查等差数列的通项公式、等比中项、数列的单调性等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先用等比中项的定义将数学语言转化为数学表达式,再用等差数列的通项公式将已知的所有表达式都用展开,解方程组解出基本量,利用等差数列的通项公式写出数列的通项公式;第二问,先利用单调性的定义,利用来判断数列单调递增.
试题解析:(1)设等差数列{an}的公差为d.由已知得
          4分
注意到d≠0,解得a1=2,d=1.
所以ann+1.             6分
(2)由(1)可知

因为        10分
,         11分
所以bn+1bn.             12分
核心考点
试题【在公差不为0的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,试比较与的大小,并说明理由.】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
等差数列的通项公式为,下列四个命题.:数列是递增数列;:数列是递增数列;:数列是递增数列;:数列是递增数列.其中真命题的是              
题型:不详难度:| 查看答案
已知数列满足,且,设项和为,则使得取得最大值的序号的值为(   )
A.7B.8C.7或8D.8或9

题型:不详难度:| 查看答案
设各项都是正整数的无穷数列满足:对任意,有.记
(1)若数列是首项,公比的等比数列,求数列的通项公式;
(2)若,证明:
(3)若数列的首项是公差为1的等差数列.记,问:使成立的最小正整数是否存在?并说明理由.
题型:不详难度:| 查看答案
一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.
求第2行和第3行的通项公式
证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于)的表达式;
(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有
题型:不详难度:| 查看答案
已知数列{}中,=+(n,则数列{}的通项公式为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.