当前位置:高中试题 > 数学试题 > 等差数列 > (本小题满分12分)已知直角的三边长,满足 (1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;(2)已知...
题目
题型:不详难度:来源:
(本小题满分12分)已知直角的三边长,满足 
(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.
答案
(1) 2、3、4;(2)参考解析
解析

试题分析:(1)已知直角三角形中三边是正整数,并且成等差数列.由此可得首项与公差的关系.从而写出三角形的面积的表达式.由于面积是从小到大排的,所以把公差.改成没关系.由于数列的前项的和的特点是每项是一项正一项负.所以相邻的两项用平方差公式化简.即可得一个等差数列的求和的式子. 由,由于指数函数是爆炸性的变化,所以要符合该不等式的不是很多,再由.利用二项式定理展开即可得时,.所以只有2,3,4三种情况.
(2);因为成等比数列.解直角三角形三边的关系可求得.所以可以写出的表达式.在递推一个式子.两式相加,再利用==.从而可得.从而即可得解答结论.再说明前三项符合即可.
试题解析:(1)设的公差为,则
设三角形的三边长为,面积,      2分


,
时,,
经检验当时,,当时,
综上所述,满足不等式的所有的值为2、3、4        6分
(2)证明因为成等比数列,.
由于为直角三角形的三边长,知,,      8分
,得,
于是

,则有.
故数列中的任意连续三项为边长均可以构成直角三角形       10分
因为 ,
,由数学归纳法得:
,同理可得,
故对于任意的都有是正整数         12分
核心考点
试题【(本小题满分12分)已知直角的三边长,满足 (1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;(2)已知】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
在等差数列中,若,则的前项和 
A.B.C.D.

题型:不详难度:| 查看答案
设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列;
(3)证明:对一切正整数n,有++…+
题型:不详难度:| 查看答案
已知数列满足).
(1)若数列是等差数列,求它的首项和公差;
(2)证明:数列不可能是等比数列;
(3)若),试求实数的值,使得数列为等比数列;并求此时数列的通项公式.
题型:不详难度:| 查看答案
已知公差不为0的等差数列的前n项和为,且成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前n项和.
题型:不详难度:| 查看答案
已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.