当前位置:高中试题 > 数学试题 > 等差数列 > 在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.(1)求证:数列是等差数列;(2...
题目
题型:不详难度:来源:
在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求证:数列是等差数列;
(2)求前n项和Sn通项an.
答案
(1)详见解析;(2)
解析

试题分析:(1)要证数列是等差数列,只须证bn+1 -bn为常数即可;(2)由等差数列的性质:下标和相等的两项和相等得到,从而由b1+b3+b5=6得到b3=2,进而由b1·b3·b5=0可得,代入等差数列的通项公式就可求出其首项和公差,再由前n项和公式就可求出Sn并写出bn的通项公式,再由an与bn的关系就可求出an来.
试题解析:(1)证明:bn= bn+1 -bn=为常数,
数列为等差数列且公差d=log2q        6分
(2)在等差数列b1+b3+b5="6,"  b3=2,又 a>1, b1=log2a1>0 b1·b3·b5=0  b5=0

由bn=log2an an=25-n( n∈N*)    13分
核心考点
试题【在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.(1)求证:数列是等差数列;(2】;主要考察你对等差数列等知识点的理解。[详细]
举一反三
是数列的前项和,且.
(1)当时,求;  
(2)若数列为等差数列,且.
①求
②设,且数列的前项和为,求的值.
题型:不详难度:| 查看答案
公比不为的等比数列的前项和为,且成等差数列,若,则(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知等差数列的前项和为,则(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知等差数列的前项和为,则数列的前项和为        .
题型:不详难度:| 查看答案
设数列满足.
(1)求
(2)先猜想出的一个通项公式,再用数学归纳法证明你的猜想.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.