当前位置:高中试题 > 数学试题 > 函数y=Asin(ωx+φ)的图象 > 如图所示的是函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|∈(0,))图象的一部分,则f()=(    )。...
题目
题型:同步题难度:来源:
如图所示的是函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|∈(0,))图象的一部分,则f()=(    )。
答案
3
核心考点
试题【如图所示的是函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|∈(0,))图象的一部分,则f()=(    )。】;主要考察你对函数y=Asin(ωx+φ)的图象等知识点的理解。[详细]
举一反三
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示。
(1)试确定f(x)的解析式;
(2)若f()=,求cos(-a)的值。
题型:同步题难度:| 查看答案
已知函数f(x)=sin2ωx+sinωx·sin(ωx+)+2cos2ωx,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为
(1)求ω;
(2)若将函数f(x)的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间。
题型:同步题难度:| 查看答案
据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f(x)=Asin(ωx+φ)+B的模型波动(x为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,该商品每件的售价为g(x)(x为月份),且满足g(x)=f(x-2)+2。
(1)分别写出该商品每件的出厂价函数f(x)、售价函数g(x)的解析式;
(2)问哪几个月能盈利?
题型:同步题难度:| 查看答案
已知函数f(x)=sinωx+cosωx(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是[     ]
A.[kπ-,kπ+],k∈Z
B.[kπ+,kπ+],k∈Z
C.[kπ-,kπ+],k∈Z
D.[kπ+,kπ+],k∈Z
题型:同步题难度:| 查看答案
设函数y=sin(ωx+φ)(ω>0,φ∈(-))的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论:①图象关于点(-,0)对称;②图象关于点(-,0)对称;③在[0,]上是增函数;④在[-,0]上是增函数中,所有正确结论的编号为(    )。
题型:同步题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.