当前位置:高中试题 > 数学试题 > 函数y=Asin(ωx+φ)的图象 > 函数y=3sin(π4-2x)图象是将函数y=-3sin2x的图象经过怎样的平移而得______....
题目
题型:不详难度:来源:
函数y=3sin(
π
4
-2x)
图象是将函数y=-3sin2x的图象经过怎样的平移而得______.
答案
函数y=3sin(
π
4
-2x)
可以化简为y=-3sin(2x-
π
4
)
,所以函数y=-3sin2x的图象向右平移
π
8
,即可得到函数y=-3sin[2(x-
π
8
)]
=-3sin(2x-
π
4
)

故答案为:向右平移
π
8
核心考点
试题【函数y=3sin(π4-2x)图象是将函数y=-3sin2x的图象经过怎样的平移而得______.】;主要考察你对函数y=Asin(ωx+φ)的图象等知识点的理解。[详细]
举一反三
设点P是函数f(x)=cos(ωx+φ)的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值为
π
4
,则f(x)的最小正周期是______.
题型:不详难度:| 查看答案
设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z).
⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.
以上结论正确的是______写出正确结论的编号).
题型:安徽难度:| 查看答案
下面给出的四个命题中:
①对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上是数列an为等差数列的充分不必要条件;
②“m=-2”是直线(m+2)x+my+1=0与“直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点A(x1,0),B(x2,0),C(0,y1),D(0,y2),则有x1x2-y1y2=0;
④将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象.
其中是真命题的有______(将你认为正确的序号都填上).
题型:不详难度:| 查看答案
已知函数f(x)=sin(ωx+φ)(ω>0,-
π
2
≤φ≤
π
2
)的图象上的两个相邻的最高点和最低点的横坐标之差的绝对值为2,且过点(2,-
1
2
),则函数f(x)=______.
题型:济南二模难度:| 查看答案
已知函数f(x)=2sinωx在区间[-
π
3
π
4
]上的最小值为-2,则ω的取值范围是(  )
A.(-∞,-
9
2
]∪[6,+∞)
B.(-∞,-
9
2
]∪[
3
2
,+∞)
C.(-∞,-2]∪[6,+∞)D.(-∞,-
3
2
]∪[
3
2
,+∞)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.