当前位置:高中试题 > 数学试题 > 同角三角函数的基本关系 > 已知函数,且当时,的最小值为2.(1)求的值,并求的单调增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函...
题目
题型:不详难度:来源:
已知函数,且当时,的最小值为2.
(1)求的值,并求的单调增区间;
(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.
答案
(1)的单调增区间是;(2).
解析

试题分析:(1)首先应用三角函数的倍角公式及辅助角公式,将原三角函数式化简成,关键其在 的最值,建立的方程;
解得,得到的单调增区间是.
(2)遵循三角函数图象的变换规则,得到,利用特殊角的三角函数值,解出方程在区间上的所有根,求和。
试题解析:(1)
   ∴
,故
,解得
的单调增区间是
(2)
,则
解得
 ∴,故方程所有根之和为.
核心考点
试题【已知函数,且当时,的最小值为2.(1)求的值,并求的单调增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得图象向右平移个单位,得到函】;主要考察你对同角三角函数的基本关系等知识点的理解。[详细]
举一反三
已知,则(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知,则             .
题型:不详难度:| 查看答案
已知,则的值=________________.
题型:不详难度:| 查看答案
的值是______________.
题型:不详难度:| 查看答案
函数的最小正周期为,则为                              (    )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.