当前位置:高中试题 > 数学试题 > 同角三角函数的基本关系 > 已知△ABC的外接圆半径R为6,面积为S,a、b、c分别是角A、B、C的对边设S=a2-(b-c)2,sinB+sinC=43.(I)求sinA的值;(II)求...
题目
题型:解答题难度:一般来源:不详
已知△ABC的外接圆半径R为6,面积为S,a、b、c分别是角A、B、C的对边设S=a2-(b-c)2,sinB+sinC=
4
3

(I)求sinA的值;
(II)求△ABC面积的最大值.
答案
(I)由S=
1
2
bcsinA,又S=a2-(b-c)2
可得:
1
2
bcsinA=a2-(b2-2bc+c2)=2bc-(b2+c2-a2)=2bc-2bccosA,又bc≠0,
变形得:
1
4
=
1-cosA
sinA
,即cosA=1-
1
4
sinA,
两边平方得:cos2A=(1-
1
4
sinA)2,又sin2A+cos2A=1,
可得1-sin2A=1-
1
2
sinA+
1
16
sin2A,即
17
16
sin2A-
1
2
sinA=0,
又sinA≠0,
sinA=
8
17

(II)由sinB+sinC=
4
3

根据正弦定理
b
sinB
=
c
sinC
=2R,可得
b
2R
+
c
2R
=
4
3
,又∵R=6,∴b+c=16,
S=
1
2
bcsinA=
4
17
bc≤
4
17
(
b+c
2
)2=
256
17
,当且仅当b=c=8时,Smax=
256
17

此时sinB=sinC=
2
3
∴sinA=sin(B+C)=
4


5
9
(≠
8
17
)与第一问矛盾

由a=2RsinA=2×6×
8
17
=
96
17
,且b+c=16,
根据余弦定理a2=b2+c2-2bc•cosA得:bc=
1012
17

此时S=
1
2
bcsinA=
4048
289

则△ABC面积的最大值为
4048
289
核心考点
试题【已知△ABC的外接圆半径R为6,面积为S,a、b、c分别是角A、B、C的对边设S=a2-(b-c)2,sinB+sinC=43.(I)求sinA的值;(II)求】;主要考察你对同角三角函数的基本关系等知识点的理解。[详细]
举一反三
已知sin22α+sin 2αcos α-cos 2α=1,α∈(0,
π
2
),求sin α、tan α的值.
题型:解答题难度:一般| 查看答案
已知方程x2-(


2
cos20°)x+(cos220°-
1
2
)=0
(1)证明:方程有两个相异的实数根.(2)若sinα,sinβ是该方程的两根,且α,β是锐角,求α与β.
题型:不详难度:| 查看答案
已知2sin2x+cos2y=1,则sin2x+cos2y的取值范围为(  )
A.(0,
1
2
]
B.[
1
2
,1]
C.[


2
2
,1]
D.(
1
2


2
2
]
题型:单选题难度:简单| 查看答案
已知角α为钝角,且sinα=
1
2
,则tanα的值为(  )
A.-


3
B.-


3
3
C.


3
3
D.


3
题型:不详难度:| 查看答案
化简2


1-sin80°
-


2+2cos80°
=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.