当前位置:高中试题 > 数学试题 > 对数函数的性质 > 函数f(x)=log12(x2-2x-3)的单调递增区间是(  )A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(3,+∞)...
题目
题型:单选题难度:简单来源:不详
函数f(x)=log
1
2
(x2-2x-3)
的单调递增区间是(  )
A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(3,+∞)
答案
由x2-2x-3>0得x<-1或x>3,
当x∈(-∞,-1)时,f(x)=x2-2x-3单调递减,
而0<
1
2
<1,由复合函数单调性可知y=log 0.5(x2-2x-3)在(-∞,-1)上是单调递增的,在(3,+∞)上是单调递减的.
故选A.
核心考点
试题【函数f(x)=log12(x2-2x-3)的单调递增区间是(  )A.(-∞,-1)B.(-∞,1)C.(1,+∞)D.(3,+∞)】;主要考察你对对数函数的性质等知识点的理解。[详细]
举一反三
已知lg2=a,lg3=b,则lg12=(  )
A.2a+bB.a+bC.2abD.2a-b
题型:单选题难度:一般| 查看答案
已知函数f(x)=|log3x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m,n2]上的最大值为2,则m+n=______.
题型:填空题难度:一般| 查看答案
计算(lg2)2+lg2•lg50+lg25=______
题型:填空题难度:一般| 查看答案
设f(x)=|lgx|,若a≠b,且f(a)=f(b),则a•b=______.
题型:填空题难度:一般| 查看答案
已知a,b,c,d均为正整数,且logab=
3
2
,logcd=
5
4
,若a-c=9,则b-d=______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.