当前位置:高中试题 > 数学试题 > 对数函数的定义 > 已知函数f(x)=lg(x2-mx-m).(1)若m=1,求函数f(x)的定义域;(2)若函数f(x)的值域为R,求实数m的取值范围;(3)若函数f(x)在区间...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=lg(x2-mx-m).
(1)若m=1,求函数f(x)的定义域;
(2)若函数f(x)的值域为R,求实数m的取值范围;
(3)若函数f(x)在区间(-∞,1-


3
)上是减函数,求实数m的取值范围.
答案
(1)x2-x-1>0⇒x>
1+


5
2
或x
1-


5
2
,因此其定义域为(-∞,
1-


5
2
)∪(
1+


5
2
,+∞)

(2)由于f(x)值城为R,因此其真数N(x)=x2-mx-m应能取遍所有的正数,结合二次函数N(x)图象易知△≥0
 &∴m≤-4或m≥0
,即m∈(-∞,-4]∪[0,+∞).
(3)因y=lgx在其定义城上为增,则N(x)=x2-mx-m应在相应定义区间上为单调函数,结合二次函数图象的对称轴与区间位置分析,其对称轴x=
m
2
≥1-


3
①同时必须考虑N(x)=x2-mx-m在(-∞,1-


3
)
上为正,故Nmin(x)=N(1-


3
)≥0,即(1-


3
)2-m(1-


3
)-m≥0
②综合①、②式可得2-2


3
≤m≤2
m∈[2-2


3
,2]
核心考点
试题【已知函数f(x)=lg(x2-mx-m).(1)若m=1,求函数f(x)的定义域;(2)若函数f(x)的值域为R,求实数m的取值范围;(3)若函数f(x)在区间】;主要考察你对对数函数的定义等知识点的理解。[详细]
举一反三
设a=(
4
5
)
x
,b=(
5
4
)
x
,c=log
4
5
x
,x>1则a,b,c由小到大的排列______.
题型:填空题难度:一般| 查看答案
已知 -3≤lo
gx0.5
≤-
3
2
,求函数f(x)=(log2x-1)•log2
x
8
的最大值和最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=loga(1-ax)(a>0,a≠1)
(1)求函数f(x)的定义域;
(2)求满足不等式loga(1-ax)>f(1)的实数x的取值范围.
题型:解答题难度:一般| 查看答案
求函数f(x)=


1+2cosx
+lg(2sinx+


3
)
的定义域.
题型:解答题难度:一般| 查看答案
若实数x的取值满足条件1≤2x


2
,求函数f(x)=log2(-3x2+x+
5
4
)
的最大值与最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.