当前位置:高中试题 > 数学试题 > 指数函数图象及性质 > 现有一张长80厘米、宽60厘米的长方形ABCD铁皮,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为l00%,不考虑焊接处损失.方案一:如图(1),从右侧两个...
题目
题型:解答题难度:一般来源:不详
现有一张长80厘米、宽60厘米的长方形ABCD铁皮,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为l00%,不考虑焊接处损失.
方案一:如图(1),从右侧两个角上剪下两个小正方形,焊接到左侧中闻,沿虚线折起,求此时铁皮盒的体积;
方案二:如图(2),若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,求该铁皮盒体积的最大值,并说明如何剪拼?.

魔方格
答案
方案一:设小正方形的边长为x,由题意得4x=60,x=15,
所以铁皮盒的体积为65×30×15=29250(cm3). …(4分)
方案二:设底面正方形的边长为x(0<x<60),长方体的高为y,
由题意得x2+4xy=4800,即y=
4800-x2
4x

所以铁皮盒体积V(x)=x2y=x2
4800-x2
4x
=-
1
4
x3+1200x
,…(10分)V/(x)=-
3
4
x2+1200
,令V′(x)=0,解得x=40或x=-40(舍),
当x∈(0,40)时,V"(x)<0;当x∈(40,60)时,V"(x)>0,
所以函数V(x)在x=40时取得最大值32000cm3.将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.     …(15分)
答:方案一铁皮盒的体积为29250cm3;方案二铁皮盒体积的最大值为32000cm3,将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.(16分)
核心考点
试题【现有一张长80厘米、宽60厘米的长方形ABCD铁皮,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为l00%,不考虑焊接处损失.方案一:如图(1),从右侧两个】;主要考察你对指数函数图象及性质等知识点的理解。[详细]
举一反三
已知f(x)=a-x(a>0且a≠1),且f(-2)>f(-3),则a的取值范围是(  )
A.a>0B.a>1C.a<1D.0<a<1
题型:单选题难度:一般| 查看答案
某家庭对新购买的商品房进行装潢,设装潢开始后的时间为t(天),室内每立方米空气中甲醛含量为y(毫克).已知在装潢过程中,y与t成正比;在装潢完工后,y与t的平方成反比,如图所示.
(Ⅰ)写出y关于t的函数关系式;
(Ⅱ)已知国家对室内甲醛含量的卫生标准是甲醛浓度不超过0.08毫克/立方米.按照这个标准,这个家庭装潢完工后,经过多少天才可以入住?魔方格
题型:解答题难度:一般| 查看答案
函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.|a|>1B.|a|>2C.a>


2
D.1<|a|<


2
题型:单选题难度:一般| 查看答案
经市场调查,某种商品在120天内的日销售量和售价均为时间t(天)的函数,日销售量与时间的关系用图(1)的一条折线表示,售价与时间的关系用图(2)的一条折线表示.
(1)写出图(1)表示的日销售量Q(千克)与时间t的函数关系式Q=g(t);
写出图(2)表示的售价(元/千克)与时间t的函数关系式P=f(t);
(2)求日销售额y(元)与时间t的函数关系,并求出日销售额最高的是哪一天?最高的销售额是多少?(注:日销售额=日销售量×售价)

魔方格

魔方格
题型:解答题难度:一般| 查看答案
如图是足球场的部分示意图,假设球门的宽AB=7m,A到边线的距离AC=30m.现距离边线5m处的一名运动员P沿着边线方向向底线运球,他观察球门的角∠APB称为视角.设P到底线的距离为PD=xm,tan∠APB记为y.
(1)试将y表示成x的函数;
(2)求当P离底线多少m时,该球员观察球门的视角最大?(结果保留根式)魔方格
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.