当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 设函数f(x)=mx2-mx-1,对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围(  )A.m>3B.m<67C.67<m<6D.m<1...
题目
题型:单选题难度:简单来源:不详
设函数f(x)=mx2-mx-1,对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围(  )
A.m>3B.m<
6
7
C.
6
7
<m<6
D.m<1
答案
(1)当m=0时,f(x)=-1<-m+5,解得m<6,故m=0;
(2)当m≠0时,该函数的对称轴是x=
1
2
,f(x)在x∈[1,3]上是单调函数.
①当m>0时,由于f(x)在[1,3]上单调递增,要使f(x)<-m+5在x∈[1,3]上恒成立,只要f(3)<-m+5即可.
即9m-3m-1<-m+5,解得m<
6
7
,故0<m<
6
7

②当m<0时,由于函数f(x)在[1,3]上是单调递减,要使f(x)<-m+5在x∈[1,3]上恒成立,只要f(1)<-m+5即可,
即m-m-1<-m+5,解得m<6,故m<0;
综上可知:实数m 的取值范围是:m<
6
7

故选B.
核心考点
试题【设函数f(x)=mx2-mx-1,对于x∈[1,3],f(x)<-m+5恒成立,求实数m的取值范围(  )A.m>3B.m<67C.67<m<6D.m<1】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
若二次函数f(x)=x2+bx+c满足f(2)=f(-2),且函数的f(x)的一个零点为1.
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)对任意的x∈[
1
2
,+∞)
,4m2f(x)+f(x-1)≥4-4m2恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知函数y=lg(ax2-2x+2).
(1)若函数y=lg(ax2-2x+2)的值域为R,求实数a的取值范围;
(2)若a=1且x≤1,求y=lg(ax2-2x+2)的反函数f-1(x);
(3)若方程lg(ax2-2x+2)=1在[
1
2
,2]
内有解,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
设函数f(x)=x2-4x+3,g(x)=3x-2,则f(g(x))>0的解集是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x2+x-6,g(x)=2x+1,α、β是方程f(x)=0的两个根(α>β).
(1)求α、β的值;
(2)数列{an}满足:a1=1,an+1=g(an),求an
(3)数列{an}满足:a1=3,an+1=an-
f(an)
g(an)
,(n=1,2,3,…)
bn=ln
an
an
,(n=1,2,…),求证数列{bn}为等比数列,并求{bn}的前n项和Sn
题型:解答题难度:一般| 查看答案
已知函数f(x)=2x2-2ax+3在区间[-1,1]有最小值,记为g(a).
(1)求g(a)的表达式;
(2)求g(a)的最大值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.