当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > (1)已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围;(2)设0≤x≤2,求函数y=4x-3•2x+5的...
题目
题型:解答题难度:一般来源:不详
(1)已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围;
(2)设0≤x≤2,求函数y=4x-3•2x+5的最大值和最小值.
答案
(1)依题设,可得f(1-m)<-f(1-m2
∵f(x)奇函数,∴-f(1-m2)=f(m2-1)
∴f (1-m)<f(m2-1)
∵函数在定义域[-2,2]内递减,∴1-m>m2-1,即m2+m-2<0,即-2<m<1
∵函数f(x)的定义域是[-2,2],
∴-2≤1-m≤2且-2≤1-m2≤2,即-1≤m≤3且-


3
≤m≤


3

综上可得,-1≤m<1;
(2)y=4x-3•2x+5=(2x-
3
2
2+
11
4

∵0≤x≤2,∴1≤2x≤4
∴2x=
3
2
时,即x=log2
3
2
时,ymin=
11
4
;2x=4时,即x=2时,ymax=9
核心考点
试题【(1)已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围;(2)设0≤x≤2,求函数y=4x-3•2x+5的】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设实数a使得不等式|2x-a|+|3x-2a|≥a2对任意实数x恒成立,则满足条件的a所组成的集合是______.
题型:填空题难度:一般| 查看答案
已知奇函数f(x),当x>0时,f(x)=log2(x+3),则f(-1)=______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=(|x|-b)2+c,函数g(x)=x+m.
(1)当b=2,m=-4时,f(x)≥g(x)恒成立,求实数c的取值范围;
(2)当c=-3,m=-2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.
题型:解答题难度:一般| 查看答案
若函数f(x)=ax+blog2(x+


x2+1
)+1在(-∞,0)上有最小值-3(a,b为非零常数),则函数f(x)在(0,+∞)上有最 ______值为 ______.
题型:填空题难度:简单| 查看答案
若f(x)在定义域(-1,1)内可导,且f′(x)<0;又当a、b∈(-1,1)且a+b=0时,f(a)+f(b)=0,解不等式f(1-m)+f(1-m2)>0.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.