当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f"(x)是函数y=f(x)的导数,f""是f"(x)的导数,若方程f""(x)=0有实数...
题目
题型:填空题难度:一般来源:不详
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f"(x)是函数y=f(x)的导数,f""是f"(x)的导数,若方程f""(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
对称中心为______;
(2)计算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=______.
答案
(1)依题意,得:f′(x)=x2-x+3,∴f″(x)=2x-1.
由f″(x)=0,即2x-1=0.
∴x=
1
2

又 f(
1
2
)=1,
∴函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为(
1
2
,1);
(2)由(1)知,若(a,b)与(c,d)为f(x)图象上的点,且关于点(
1
2
,1)对称,则有a+c=1,且f(a)+f(c)=2,
设S=f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)

又S=f(
2010
2011
)+f(
2009
2011
)+f(
2008
2011
)+f(
2007
2011
)+…+f(
1
2011
),
所以2S=[f(
1
2011
)+f(
2010
2011
)]+…+[f(
2010
2011
)+f(
1
2011
)]=2×2010,
所以S=2010,即f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=2010.
故答案为:(1)(
1
2
,1);(2)2010.
核心考点
试题【对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f"(x)是函数y=f(x)的导数,f""是f"(x)的导数,若方程f""(x)=0有实数】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=lnx+b•x2的图象过点(1,0)
(I)求f(x)的解析式;
(Ⅱ)若f(x)≥
t
x
-1nx(t
为实数)恒成立,求t的取值范围;
(Ⅲ)当m>0时,讨论F(x)=f(x)+
x2
2
-
m2+1
m
x
在区间(0,2)上极值点的个数.
题型:解答题难度:一般| 查看答案
函数f(x)=





1-5-x,x≥0
5x-1,x<0
,则该函数为(  )
A.单调递增函数,奇函数B.单调递增函数,偶函数
C.单调递减函数,奇函数D.单调递减函数,偶函数
题型:单选题难度:简单| 查看答案
定义在R上的偶函数f(x)满足条件f(x+2)=f(x),且在[-3,-2]上递减,若α,β是锐角三角形的两内角,以下关系成立的是(  )
A.f(sinα)<f(cosβ)B.f(sinα)>f(cosβ)
C.f(sinα)>f(sinβ)D.f(cosα)<f(cosβ)
题型:单选题难度:简单| 查看答案
已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且对任意正实数x1、x2(x1≠x2),恒
f(x1)-f(x2)
x1-x2
>0
,则一定有(  )
A.f(cos600°)>f(log
1
2
32

)
B.f(cos600°)>f(-log
1
2
32

)
C.f(-cos600°)>f(log
1
2
32

)
D.f(-cos600°)>f(-log
1
2
32

)
题型:单选题难度:简单| 查看答案
已知f(x)=ax5+bx3+cx+5(a,b,c是常数),且f(5)=9,则f(-5)的值为______.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.