当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 在R上定义运算:x⊗y=x(1-y),若∃x∈R使得(x-a)⊗(x+a)>1成立,则实数a的取值范围是(  )A.(-∞,-12)∪(32,+∞)B.(-12...
题目
题型:单选题难度:简单来源:惠州一模
在R上定义运算:x⊗y=x(1-y),若∃x∈R使得(x-a)⊗(x+a)>1成立,则实数a的取值范围是(  )
A.(-∞,-
1
2
)∪(
3
2
,+∞)
B.(-
1
2
3
2
C.(-
3
2
1
2
D.(-∞,-
3
2
)∪(
1
2
,+∞)
答案
由题知(x-a)⊗(x+a)=(x-a)[1-(x+a)]=-x2+x+a2-a=-(x-
1
2
2+a2-a+
1
4

∴不等式(x-a)⊗(x+a)>1对任意实数x都成立转化为-(x-
1
2
2+a2-a+
1
4
>1对任意实数x都成立,
即  a2-a+
1
4
>1恒成立,
解可得a<-
1
2
或a>
3
2

故选A.
核心考点
试题【在R上定义运算:x⊗y=x(1-y),若∃x∈R使得(x-a)⊗(x+a)>1成立,则实数a的取值范围是(  )A.(-∞,-12)∪(32,+∞)B.(-12】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=xln(x+1),那么x<0时,f(x)=______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=ax+1-3(a>0且a≠1)的反函数的图象恒过定点A,且点A在直线mx+ny+1=0上,若m>0,n>0.则
1
m
+
2
n
的最小值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=|x-2|,若a≠0,且a,b∈R,都有不等式|a+b|+|a-b|≥|a|•f(x)成立,则实数x的取值范围是______.
题型:填空题难度:一般| 查看答案
关于函数f(x)=





(x-3)e-x,x≥0
2ax-3,x<0
(a为常数,且a>0),对于下列命题:
①函数f(x)在每一点处都连续;
②若a=2,则函数f(x)在x=0处可导;
③函数f(x)在R上存在反函数;
④函数f(x)有最大值
1
e4

⑤对任意的实数x1>x2≥0,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x3-3ax(a∈R),函数g(x)=㏑x.
(1)当a=1时,求函数f(x)在区间[-2,2]上的最小值;
(2)若在区间[1,2]上f(x)的图象恒在g(x)的图象的上方(没有公共点),求实数a的取值范围;
(3)当a>0时,设h(x)=|f(x)|,x∈[-1,1].求h(x)的最大值F(a)的解析式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.