当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知f(x)为偶函数且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x若n∈N*,an=f(n),则a2007(  )A.2007B.12C.2D....
题目
题型:单选题难度:一般来源:不详
已知f(x)为偶函数且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x若n∈N*,an=f(n),则a2007(  )
A.2007B.
1
2
C.2D.-2
答案
∵f(2+x)=f(2-x),∴f(x)=f(4-x)
又∵f(x)为偶函数,∴f(x)=f(-x)
∴f(-x)=f(4-x),即函数的周期T=4.
∴a2007=a501×4+3=a3=f(3)=f(-1)=2-1=
1
2

故选B.
核心考点
试题【已知f(x)为偶函数且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x若n∈N*,an=f(n),则a2007(  )A.2007B.12C.2D.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
定义在R上的函数f(x)满足f(x+1)=-f(x),当0≤x≤1时,f(x)=-|x-
1
2
|+
1
2
,则f(
5
2
)-f(
99
2
)
=(  )
A.1B.0C.
1
2
D.-
1
2
题型:单选题难度:简单| 查看答案
在下列函数中:①f(x)=x 
1
2
,②f(x)=x 
2
3
,③f(x)=x 
3
4
,④f(x)=x 
1
3
,其中偶函数的个数是(  )
A.1B.2C.3D.4
题型:单选题难度:一般| 查看答案
若不等式ax2+4x+a>1-2x2对任意实数x均成立,则实数a的取值范围是(  )
A.a≥2或a≤-3B.a>2或a≤-3C.a>2D.-2<a<2
题型:单选题难度:一般| 查看答案
已知直线y=x与函数g(x)=
2
x
(x>0)
和图象交于点Q,P、M分别是直线y=x与函数g(x)=
2
x
(x>0)
的图象上异于点Q的两点,若对于任意点M,PM≥PQ恒成立,则点P横坐标的取值范围是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|;
(3)设函数g(x)=





f(x),f(x)≥f(x)
f(x),f(x)<f(x)
,求g(x)在x∈[2,4]时的最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.