当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x2-2tx+1,x∈[2,5]有反函数,且函数f(x)的最大值为8,求实数t的值....
题目
题型:解答题难度:一般来源:上海模拟
已知函数f(x)=x2-2tx+1,x∈[2,5]有反函数,且函数f(x)的最大值为8,求实数t的值.
答案
因为函数有反函数,所以在定义域内是一一对应的函数f(x)=x2-2tx+1的对称轴为x=t,所以t≤2或t≥5
若t≤2,在区间[2,5]上函数是单调递增的,所以f(x)max=f(5)=25-10t+1=8,解得t=
9
5
,符合       
若t≥5,在区间[2,5]上函数是单调递减的,所以f(x)max=f(2)=4-4t+1=8,解得t=-
3
4
,与t≥5矛盾,舍去 
综上所述,满足题意的实数t的值为
9
5
核心考点
试题【已知函数f(x)=x2-2tx+1,x∈[2,5]有反函数,且函数f(x)的最大值为8,求实数t的值.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=x3-log3


x2+1
-x),则对于任意实数a、b,a+b≠0,
f(a)+f(b)
a+b
取值的情况是(  )
A.大于0B.小于0C.等于0D.不确定
题型:单选题难度:简单| 查看答案
(理)已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(III)讨论函数h(x)=ln(1+x2)-
1
2
f(x)-k的零点个数?
题型:解答题难度:一般| 查看答案
设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若∀x∈[-2-


2
,2+


2
]
,不等式f(x+t)≥2f(x)恒成立,则实数t的取值范是______.
题型:填空题难度:一般| 查看答案
已知数列{an}满足a1=1,an+1=2an+2n(n∈N*).
(1)证明数列{
an
2n
}是等差数列,并求出数列{an}的通项公式an

(2)求等差数列{bn}(n∈N*),使b1Cn0+b2Cn1+b3Cn2+…+bn+1Cnn=an+1对n∈N*都成立;
(3)令cn=nbn(n∈N*),是否存在正常数M,使
c1
a1
+
c2
a2
+
c3
a3
+…+
cn
an
<M对n∈N*恒成立,并证明你的结论.
题型:解答题难度:一般| 查看答案
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x3+mx2+(1-m)x.
(I)当m=2时,求f(x)的解析式;
(II)设曲线y=f(x)在x=x0处的切线斜率为k,且对于任意的x0∈[-1,1]-1≤k≤9,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.