当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 给出下列命题:①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;②如果函数...
题目
题型:填空题难度:一般来源:不详
给出下列命题:
①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;
②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;
③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确的命题是 ______.(把你认为正确命题的序号都填上)
答案
(1)由题意可知,
对任意的x1,x2∈R,且x1≠x2
当x1>x2时,
f(x1)<f(x2),
当x1<x2时,
f(x1)>f(x2),
可知函数随着x的递增而递减,递减而递增,
因而可知函数f(x)在R上是减函数,故此命题正确;
(2)由题意知f(x)=-f(2+x),
因而可知f(x+4)=-f(x+2)=f(x),
因而可知函数的周期为4,故此命题正确.
(3)根据函数的平移,
可知函数y=f(x+1)-2先向左平移1个单位,再向上平移2个单位,
存在函数f(x)=2x使得图象可以重合,故此命题错误.
(4)由f(-x)=-f(x)
且x>0时,f′(x)>0,
知函数f(x)关于原点中心对称且单调递增,
由g(-x)=g(x)
且x>0时,g′(x)>0,
可知函数g(x)关于y轴对称且先单调递增后单调递减,
因此可判断出x<0时,f′(x)>g′(x),故此命题正确,
故答案为:①②④.
核心考点
试题【给出下列命题:①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;②如果函数】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=log2
3x-1
3x+1
,(x∈(-∞,-
1
3
)∪(
1
3
,+∞))
(1)判断函数f(x)的奇偶性,并说明理由;
(2)判断函数f(x)在区间(
1
3
,+∞)上的单调性.
题型:解答题难度:一般| 查看答案
求函数y=
3
x-2
在区间[3,6]上的最大值______和最小值______.
变式练习:y=
3+x
x-2
,x∈[3,6]
上的最大值______和最小值______.
探究:y=
3
x-2
的图象与y=
3
x
的关系______.
题型:填空题难度:简单| 查看答案
求函数y=2x+


x-1
的最小值.
题型:解答题难度:一般| 查看答案
给出函数f(x)=





2x      (x≥3)
f(x+1)  (x<3)
,则f(2)=______.
题型:填空题难度:一般| 查看答案
若函数f(x)=





2x-1,x<2
x-
1
2
,  x≥2 
,则f[f(4)]=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.