当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y...
题目
题型:解答题难度:一般来源:不详
对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫做闭函数.
(Ⅰ)请你举出一个闭函数的例子,并写出它的一个符合条件②的区间[a,b];
(Ⅱ)求闭函数y=-x3符合条件②的区间[a,b];
(Ⅲ)判断函数f(x)=
3
4
x+
1
x
  (x>0)
是否为闭函数?并说明理由.
答案
(Ⅰ)如f(x)=x,[a,b]=[1,2].
(Ⅱ)由题意,y=-x3在[a,b]上递减,则





b=-a3
a=-b3
b>a

解得





a=-1
b=1

所以,所求的区间为[-1,1].
(Ⅲ)取x1=1,x2=10,则f(x1)=
7
4
76
10
=f(x2)

即f(x)不是(0,+∞)上的减函数.
x1=
1
10
x2=
1
100
f(x1)=
3
40
+10<
3
400
+100=f(x2)

即f(x)不是(0,+∞)上的增函数.
所以,函数在定义域内既不单调递增也不单调递减,从而该函数不是闭函数.
核心考点
试题【对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数y=f(x),x∈N*,y∈N*,满足:①对任意a,b∈N*,a≠b,都有af(a)+bf(b)>af(b)+bf(a);②对任意n∈N*都有f[f(n)]=3n.
(I)试证明:f(x)为N*上的单调增函数;
(II)求f(1)+f(6)+f(28);
(III)令an=f(3n),n∈N*,试证明:.
n
4n+2
1
a1
+
1
a2
+…+
1
an
1
4
题型:解答题难度:一般| 查看答案
设函数f(x)=





2-x  x≥0
x-2  x<0.
若f(x0)<1,则x0的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=|x-m|和函数g(x)=x|x-m|+m2-7m.
(1)若方程f(x)=|m|在[-4,+∞)上有两个不同的解,求实数m的取值范围;
(2)若对任意x1∈(-∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
定义一种运算“*”对于正整数满足以下运算性质:
(1)2*2010=1;  (2)(2n+2)*2010=3×[(2n)*2010],则2008*2010=______.
题型:填空题难度:一般| 查看答案
设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为(  )
A.2B.1C.0D.-2
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.