当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 函数f(x)=lnx-a(x-1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;...
题目
题型:解答题难度:一般来源:不详
函数f(x)=lnx-
a(x-1)
x
(x>0,a∈R)

(1)试求f(x)的单调区间;
(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;
(3)求证:不等式
1
lnx
-
1
x-1
1
2
对于x∈(1,2)恒成立.
答案
(1)函数的定义域是(0,+∞),导数f′(x)=
1
x
-
a
x2

 若a≤0,导数f′(x)在(0,+∞)上大于0,函数的单调增区间是(0,+∞);
若a>0,在(a,+∞)上,导数大于0,函数的单调增区间是(a,+∞),
在(a,+∞)上,导数小于0,单调减区间是(0,a)
(2)由第一问知道,当a>0时候,函数f(x)在(0,a)上递减,在(a,+∞)上递增,
所以要使得函数f(x)的图象存在唯一零点,当且仅当f(a)=0,即a=1
(3)要证
1
lnx
-
1
x-1
1
2
,即证
1
lnx
1
x-1
+
1
2
,即证lnx>
2x-2
x+1

g(x)=lnx-
2x-2
x+1
,∴g′(x)=
1
x
-
4
(x+1)2
>0,x∈(1,2)
恒成立
∴g(x)min>g(1)=0,∴g(x)>0,即
1
lnx
-
1
x-1
1
2
核心考点
试题【函数f(x)=lnx-a(x-1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数f(x)=
1
2
x2- (a+b)


x2+1
+
9
2
,g(x)=ax2-b(a、b、x∈R),集合A={x|
1
2
x2-3


x2+1
+
9
2
≤0}

(1)求集合A;
(2)如果b=0,对任意x∈A时,f(x)≥0恒成立,求实数a的范围;
(3)如果b>0,当“f(x)≥0对任意x∈A恒成立”与“g(x)≤0在x∈A内必有解”同时成立时,求a的最大值.
题型:解答题难度:一般| 查看答案
已知f(x)=x5+ax3+bx-8,若f(-2)=10,则f(2)=______.
题型:填空题难度:一般| 查看答案
若f(x)是定义在(0,+∞)上的单调增函数,且f(x)>f(2-x),则x的取值范围是(  )
A.x>1B.x<1C.0<x<2D.1<x<2
题型:单选题难度:一般| 查看答案
已知f(x)满足f(a•b)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=(  )
A.2pqB.2(p+q)C.p2q2D.p2+q2
题型:单选题难度:一般| 查看答案
已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)求函数f(x)的解析式;
(2)用单调性的定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(t2-1)+f(t)<0.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.