题目
题型:解答题难度:一般来源:不详
x-3 |
x+3 |
答案
∵f(x)的定义域为[α,β](β>α>0),则[α,β]⊂(3,+∞).
设x1,x2∈[α,β],则x1<x2,且x1,x2>3,
f(x1)-f(x2)=logm
x1-3 |
x1+3 |
x2-3 |
x2+3 |
(x1-3)(x2+3) |
(x1+3)(x2-3) |
∵(x1-3)(x2+3)-(x1+3)(x2-3)=6(x1-x2)<0,
∴(x1-3)(x2+3)<(x1+3)(x2-3)即
(x1-3)(x2+3) |
(x1+3)(x2-3) |
∴当0<m<1时,logm
(x1-3)(x2+3) |
(x1+3)(x2-3) |
当m>1时,logm
(x1-3)(x2+3) |
(x1+3)(x2-3) |
故当0<m<1时,f(x)为减函数;m>1时,f(x)为增函数.
核心考点
举一反三
|
f(x1)-f(x2) |
x1-x2 |
A.(0,1) | B.(0,
| C.[
| D.[
|
1 |
18 |
3 |
t |
A.e5 | B.5e | C.ln5 | D.log5e |
ax+1 |
x+2 |
1 |
2 |