当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=1a-1x(a≠0,x≠0).(1)求证:f(x)在(0,+∞)上是增函数;(2)设F(x)=f(x)-a,且F(x)为奇函数,求a的值;(3...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=
1
a
-
1
x
(a≠0,x≠0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)设F(x)=f(x)-a,且F(x)为奇函数,求a的值;
(3)若关于t(t≠0)的方程f(
1
t2
)=t4+1
有实数解,求a的取值范围.
答案
(1)证明:任取x1>x2>0,
f(x1)-f(x2)=(
1
a
-
1
x1
)-(
1
a
-
1
x2
)=
1
x2
-
1
x1
=
x1-x2
x1x2
  …(1分)
∵x1>x2>0,∴x1x2>0,x1-x2>0,…(3分)
∴f(x1)-f(x2)>0,即f(x1)>f(x2
故f(x)在(0,+∞)上是增函数             …(5分)
(2)可得F(x)=f(x)-a=
1
a
-
1
x
-a
…(6分)
F(-x)=
1
a
+
1
x
-a
,又因为F(-x)为奇函数,
所以 F(-x)+F(x)=
2
a
-2a=0
…(8分)
解得 a=1或 a=-1…(10分)
(3)由f(
1
t2
)=t4+1
得:t4+t2+1-
1
a
=0
,令 m=t2,(m>0)…(12分)
所以本题等价于关于m的方程 m2+m+1-
1
a
=0
有正数解.   …(14分)
F(m)=m2+m+1-
1
a
,其对称轴为 m=-
1
2

∴F(m)在区间(-
1
2
,+∞)
为增函数,
所以有 F(0)=1-
1
a
<0
,解得0<a<1…(16分)
核心考点
试题【已知函数f(x)=1a-1x(a≠0,x≠0).(1)求证:f(x)在(0,+∞)上是增函数;(2)设F(x)=f(x)-a,且F(x)为奇函数,求a的值;(3】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-2x+c(c为常数),则f(-1)=______.
题型:填空题难度:一般| 查看答案
已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是(  )
A.f(-x1)>f(-x2
B.f(-x1)<f(-x2
C.f(-x1)=f(-x2
D.f(-x1)与f(-x2)的大小关系不能确定
题型:单选题难度:简单| 查看答案
已知函数f(x)=
ax-1
ax+1
(a>1)

(1)判断函数的奇偶性;
(2)证明f(x)是R上的增函数.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(Ⅰ)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)若F(x)=





f(x)x>0
-f(x)x<0
当mn<0,m+n>0,a>0,且函数f(x)为偶函数时,试判断F(m)+F(n)能否大于0?
题型:解答题难度:一般| 查看答案
已知幂函数y=f(x)的图象过点(


2
,2


2
)
,则f(2)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.