当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与...
题目
题型:解答题难度:简单来源:不详
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.
答案
(1)π-4.
(2)4
(3)递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)
解析

试题分析:解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数与f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函数y=f(x)的图象关于直线x=1对称.
又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.

当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则
S=4SOAB=4×=4.
(3)根据(1)(2)可知函数的图形,根据奇偶性以及解析式和对称中心可知,

在一个周期[-1,3]内的图象可知增区间为[-1,1],减区间为[1,3],那么推广到整个实数域可知,都加上周期的整数倍即可,故可知函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z)
点评:主要是考查了函数的图象与性质的综合运用,属于中档题。
核心考点
试题【设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数,使是增函数的的区间是________
题型:填空题难度:简单| 查看答案
函数的单调递减区间为      
题型:填空题难度:简单| 查看答案
已知函数互为反函数,且函数与函数也互为反函数,若=(    )
A.0B.1C.-2010 D.-2009

题型:单选题难度:简单| 查看答案
已知函数时,求曲线在点处的切线方程;求函数的极值
题型:解答题难度:简单| 查看答案
已知函数 .
(1)若,求的单调区间及的最小值;
(2)若,求的单调区间;
(3)试比较的大小,并证明你的结论.
题型:解答题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.