当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.(1)求证:函数是上的“型”函数;(2)设是(...
题目
题型:解答题难度:一般来源:不详
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数的值.
答案
(1)详见解析;(2);(3)
解析

试题分析:(1)根据题意可将函数中的绝对值去掉可得一个分段函数,可作出函数的图象,不难发现当时,;当时,,由此可易得证; (2)由(1)中的函数不难求出函数的最小值,这们即可将问题转化为求恒成立,这是一个关于的含有绝对值的不等式,去掉绝对值可得,然后采用先分开后合并的方法求出此不等式的解集; (3)根据题中“型”函数的定义,则可假设存在闭区间和常数,使得对任意的,都有,这样即可得到一个恒等式,即对任意恒成立,则对应系数分别相等,即可求出对应的,注意要回代检验一下,判断其余的是否均大于这个最小值.
试题解析:(1)当时,;当时,
∴ 存在闭区间和常数符合条件.                        4分
(2)对一切的恒成立,
,                        6分
解得 .                                                    10分
(3)存在闭区间和常数,使得对任意的
都有,即
对任意恒成立
                              12分
① 当时,
时,
,即时,
由题意知,符合条件;                                     14分
②当时,  
不符合要求;                                          16分
综上,
核心考点
试题【对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.(1)求证:函数是上的“型”函数;(2)设是(】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
在圆上任取一点,设点轴上的正投影为点.当点在圆上运动时,动点满足,动点形成的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,若是曲线上的两个动点,且满足,求的取值范围.
题型:解答题难度:一般| 查看答案
下列函数中既是偶函数又在(0,+∞)上是增函数的是(   )
A.B.C.D.

题型:单选题难度:一般| 查看答案
设定义域为[0,1]的函数同时满足以下三个条件时称为“友谊函数”:
(1)对任意的,总有≥0;
(2)
(3)若成立,则下列判断正确的有     .
(1)为“友谊函数”,则
(2)函数在区间[0,1]上是“友谊函数”;
(3)若为“友谊函数”,且0≤≤1,则.
题型:解答题难度:一般| 查看答案
已知函数
(1)求的定义域;
(2)问是否存在实数,当时,的值域为,且 若存在,求出的值,若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已函数是定义在上的奇函数,在上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.