当前位置:高中试题 > 数学试题 > 求函数解析式 > 已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则f(x)=______....
题目
题型:填空题难度:简单来源:不详
已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则f(x)=______.
答案
∵函数f(x)在R上可导,且f(x)=x2+2xf′(2),
∴f′(x)=2x+2,∴f′(2)=2×2+2=6,
∴f(x)=x2+2x×6=x2+12x,
故答案为:x2+12x;
核心考点
试题【已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则f(x)=______.】;主要考察你对求函数解析式等知识点的理解。[详细]
举一反三
设函数y=f(x)对任意的实数x,都有f(x)=
1
2
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.
题型:解答题难度:一般| 查看答案
定义在R上的函数f(x)=ax3+bx2+cx+d满足:函数f(x+2)的图象关于点(-2,0)对称;函数f(x)的图象过点P(3,-6);函数f(x)在点x1,x2处取得极值,且|x1-x2|=4.
(1)求f(x)表达式;
(2)求曲线y=f(x)在点P处的切线方程;
(3)求证:∀α、β∈R,-
64
3
≤f(2cosα)-f(2sinβ)≤
64
3
题型:解答题难度:一般| 查看答案
已知函数y=kx与y=x2+2(x≥0)的图象相交于A(x1,y1),B(x2,y2),l1,l2分别是y=x2+2(x≥0)的图象在A,B两点的切线,M,N分别是l1,l2与x轴的交点.
(I)求k的取值范围;
(II)设t为点M的横坐标,当x1<x2时,写出t以x1为自变量的函数式,并求其定义域和值域;
(III)试比较|OM|与|ON|的大小,并说明理由(O是坐标原点).
题型:解答题难度:一般| 查看答案
已知x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,且函数f(x)的图象在x=2处的切线的斜率为2e2
(Ⅰ)求函数f(x)的解析式并求单调区间.
(Ⅱ)设g(x)=
f′(x)
ex
,其中x∈[-2,m],问:对于任意的m>-2,方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax3+bx2+cx+d(a≠0),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)的表达式为(  )
A.x3+6x2+9xB.x3-6x2-9xC.x3-6x2+9xD.x3+6x2-9x
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.