当前位置:高中试题 > 数学试题 > 函数定义域 > 已知函数f(x)=2x+2-x2x-2-x (1)求f(x)的定义域和值域;(2)写出f(x))的单调区间,并用定义证明f(x)在所写区间上的单调性....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=
2x+2-x
2x-2-x 

(1)求f(x)的定义域和值域;
(2)写出f(x))的单调区间,并用定义证明f(x)在所写区间上的单调性.
答案
(1)f(x)=
2x+2-x
2x-2-x 
=
4x+1
4x-1 

要使函数成立,需满足4x≠1,即4x≠40,解得≠0
∴定义域为x∈(-∞,0)∪(0,+∞).
由y=
4x+1
4x-1 
4x=
y+1
y-1
>0⇒
y>1或y<-1
∴函数的值域为(-∞,-1)∪(1,+∞)
(2)函数f(x)的单调递减区间为(0,+∞)和(-∞,0)
设x1,x2∈(0,+∞),且x1<x2
f(x2)-f(x1)=
4x2+1
4x2-1
-
4x1+1
4x1-1
=
2(4x1-4x2)
(4x2-1)(4x1-1))

∵x1,x2∈(0,+∞),且x1<x2
4x1-1>0,4x2-1>0,4x1-4x2<0
2(4x1-4x2)
(4x2-1)(4x1-1))
<0,
即f(x2)-f(x1)<0(,∴f(x2)<f(x1
∴f(x)在(0,+∞)上为减函数.
设x1,x2∈(-∞,0),且x1<x2
f(x2)-f(x1)=
4x2+1
4x2-1
-
4x1+1
4x1-1
=
2(4x1-4x2)
(4x2-1)(4x1-1))

∵x1,x2∈(-∞,0),且x1<x2
4x1-1<0,4x2-1<0,4x1-4x2<0
2(4x1-4x2)
(4x2-1)(4x1-1))
<0,
即f(x2)-f(x1)<0(,∴f(x2)<f(x1
∴f(x)在(-∞,0)上为减函数.
核心考点
试题【已知函数f(x)=2x+2-x2x-2-x (1)求f(x)的定义域和值域;(2)写出f(x))的单调区间,并用定义证明f(x)在所写区间上的单调性.】;主要考察你对函数定义域等知识点的理解。[详细]
举一反三
函数y=


log
2
3
x-1
的定义域为______.
题型:填空题难度:一般| 查看答案
已知f(x)=1+log2x(1≤x≤4),记g(x)=2f2(x)+f(2x)-7
(1)求函数g(x)的定义域.
(2)求函数g(x)的零点.
题型:解答题难度:一般| 查看答案
函数y=
|sinx|
sinx
+
cosx
|cosx|
+
|tanx|
tanx
+
cotx
|cotx|
的值域是(  )
A.{-2,4}B.{-2,0,4}C.{-2,0,2,4}D.{-4,-2,0,4}
题型:单选题难度:简单| 查看答案
已知函数f(x)=





1
2
x+1(-2≤x≤0)
2|x-2(0<x≤2)
,函数g(x)=ax-1,x∈[-2,2],对于任意x1∈[-2,2],总存在x0∈[-2,2],
使得g(x0)=f(x1)成立.
(1)求f(x)的值域.
(2)求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=log2|x+1|.
(1)求函数y=f(x)的定义域和值域;
(2)指出函数y=f(x)的单调区间.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.