当前位置:高中试题 > 数学试题 > 集合运算 > 设P1,P2, ,Pj为集合P={1,2, ,i}的子集,其中i,j为正整数.记aij为满足P1∩P2∩ ∩Pj=Æ的有序子集组(P1,P2, ,Pj)的个数....
题目
题型:解答题难度:一般来源:不详
设P1,P2, ,Pj为集合P={1,2, ,i}的子集,其中i,j为正整数.记aij为满足P1∩P2∩ ∩Pj=Æ的有序子集组(P1,P2, ,Pj)的个数.
(1)求a22的值;
(2)求aij的表达式.
答案
(1)a22=9;(2)aij=(2j 1)i
解析

试题分析:(1)由题意得P1,P2为集合P={1,2}的子集,因为P1∩P2=Æ,所以集合P={1,2}中的元素“1”共有1ÏP1,且1Ï P2;1ÎP1,且1Ï P2;1ÏP1,且1ÎP2,同理可得集合P={1,2}中的元素“2”也有3种情形,根据分步乘法原理得,a22=3×3=9;(2)考虑P={1,2, ,i}中的元素“1”,然后分情况讨论解答.
试题解析:(1)由题意得P1,P2为集合P={1,2}的子集,
因为P1∩P2=Æ,
所以集合P={1,2}中的元素“1”共有如下3种情形:
1ÏP1,且1Ï P2;1ÎP1,且1Ï P2;1ÏP1,且1ÎP2
同理可得集合P={1,2}中的元素“2”也有3种情形,
根据分步乘法原理得,a22=3×3=9;                           4分
(2)考虑P={1,2, ,i}中的元素“1”,有如下情形:
1不属于P1,P2, ,Pj中的任何一个,共Cj0种;
1只属于P1,P2, ,Pj中的某一个,共Cj1种;
1只属于P1,P2, ,Pj中的某两个,共Cj2种;
1只属于P1,P2, ,Pj中的某(j 1)个,共Cjj 1种,
根据分类加法原理得,元素“1”共有Cj0+Cj1+Cj2+ +Cjj 1=2j 1种情形,    8分
同理可得,集合P={1,2, ,i}中其它任一元素均有(2j 1)种情形,
根据分步乘法原理得,aij=(2j 1)i.                            10分
核心考点
试题【设P1,P2, ,Pj为集合P={1,2, ,i}的子集,其中i,j为正整数.记aij为满足P1∩P2∩ ∩Pj=Æ的有序子集组(P1,P2, ,Pj)的个数.】;主要考察你对集合运算等知识点的理解。[详细]
举一反三
全集,集合,则集合=(   )
A.B.C. D.

题型:单选题难度:简单| 查看答案
设全集,集合,则集合=(   )
A. B.C. D.

题型:单选题难度:一般| 查看答案
已知全集,,则(    )
A.B.C.D.

题型:单选题难度:一般| 查看答案
已知命题,则“为真”是“为真”的(    )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

题型:单选题难度:一般| 查看答案
已知集合,则集合等于(  )
A.B.C.D.

题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.