当前位置:初中试题 > 数学试题 > 平面直角坐标系 > .如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y. 则能够正确反映与之...
题目
题型:不详难度:来源:
.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y. 则能够正确反映之间的函数关系的图象是

答案
A
解析
过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.

解:过点P作PF⊥BC于F,
∵PE=PB,
∴BF=EF,
∵正方形ABCD的边长是1,
∴AC==
∵AP=x,∴PC=-x,
∴PF=FC=-x)=1-x,
∴BF=FE=1-FC=x,
∴SPBE=BE?PF=x(1-x)=-x2+x,
即y=-x2+x(0<x<),
∴y是x的二次函数(0<x<),
故选A.
本题考查了动点问题的函数图象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
核心考点
试题【.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y. 则能够正确反映与之】;主要考察你对平面直角坐标系等知识点的理解。[详细]
举一反三
(本题7分)(1)如图,⊿ABC的三个顶点坐标
分别为A(-1, 1)、B(-2,3)、C(-1,3),
(1) 将⊿ABC沿x轴正方向平移2个单位得到⊿A1B1C1
请在网格中画出
(2)⊿A1B1C1绕点(0,1)顺时针旋转90°得到⊿A2B2C2
则直线A2B2的解析式是        .
题型:不详难度:| 查看答案
在平面直角坐标系中,点(1,3)位于第       象限.
题型:不详难度:| 查看答案
如图,直线y=kx+2与x轴、y轴分别交于点A、

B,点C(1,a)是直线与双曲线的一个交点,过点C作   
CD⊥y轴,垂足为D,且△BCD的面积为1.
(1)求双曲线的解析式与直线AB的解析式:
(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与
△BCD相似,求点E的坐标.
题型:不详难度:| 查看答案
如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.
(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
(2)当P在线段AB上运动时,设直线l分到与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.

题型:不详难度:| 查看答案
在直角坐标系中,已知A(1,0)、B(-1,-2)、C(2,-2)三点坐标,若以ABCD为顶点的四边形是平行四边形,那么点D的坐标可以是             .(填序号,多填或填错得0分,少填酌情给分)
①(-2,0)    ②(0,-4) ③(4,0)  ④(1,-4)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.