当前位置:初中试题 > 数学试题 > 平面直角坐标系 > 如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是       ...
题目
题型:不详难度:来源:
如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是              

答案
(1,-2).
解析

试题分析:根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.
由用(-2,-1)表示白棋①的位置,用(-1,-3)表示白棋③的位置知,y轴为从左向数的第四条竖直直线,且向上为正方向,x轴是从下往上数第五条水平直线,这两条直线交点为坐标原点.那么黑棋②的位置为(1,-2).
核心考点
试题【如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是       】;主要考察你对平面直角坐标系等知识点的理解。[详细]
举一反三
例:说明代数式的几何意义,并求它的最小值.
解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
所以PA′+PB的最小值为线段A′B的长度.为此,构造直角
三角形A′CB,因为A′C=3,CB=3,所以A′B=
即原式的最小值为

根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B       的距离之和.(填写点B的坐标)
(2)求代数式的最小值
题型:不详难度:| 查看答案
点(-1,2)位于(    )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
点P(3,-2)关于y轴对称的点的坐标为          .
题型:不详难度:| 查看答案
已知坐标原点O和点A(1,1),试在X轴上找到一点P,使△AOP为等腰三角形,写出满足条件的点P的坐标            
题型:不详难度:| 查看答案
正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为(  )
A.(-2,2)B.(4,1)C.(3,1)D.(4,0)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.